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Obtaining a raw dataset comprising a plurality of data
samples that store historical values of a target entity

pr@c;ess mcﬂuaﬁes

Detecting, by a guantile-based outlier filtration
algorithm, outlier data samples of the plurality of
data samples that exceed a ic}wer quantile

' Generating an zntermednaﬁ:e outlier-reduced dataset

that includes a subset of the plurality of data
samples, wherein the intermediate outlier-reduced
dataset exciudes the outiier data samples that
exceed the lower guantie threshold or the upper

Quamaﬂe threshold |

. . e e . . ey e JrEp——— e e e . e e e e

transfermed features ma‘cnx and a s;:aarse matrnx
wherein the transtormed features malnix includes a
olurality of feature vectors of a plurality of
principal components of the intermediate outlier-
requced dataset

Generating a refined outtaermreduced dataset that
includes a subset of the plurality of feature vectors,
wherein the refined outlier-reduced dataset
sxcludes feature vectors of the transformed
features matrix that are associated with an
anomalous value in the sparse matrix

dataset

Predicting, via the frained mcdel a value of the target
entity at a future time

FIG. 14
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Skewness of Raw Data 2016
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N 2019 1
l 2020 11

o 18 2021 1
& 3 N\
§\i
|
________________________________________________________________________________________________________________________________________________________________ N
2016 2007 2018 2019 2020 2021
Year
G, 17A
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f”1608
Refined Qutlier-Reduced
Dataset

a4
> Trained Model

FIG. 18A

~ 1804
viogel Input

" Trained |
Model

. v ~1806
Future Value

FIG. 18B

o 1810
Selecting a future timeframe for demand
prediction of an energy commodity

Obtaining features of the energy commodity
from a period preceding the future timeframe

. 183@

Extracting temporal features from the future
timeframe
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SYSTEMS AND METHODS FOR OUTLIER
DETECTION AND FEATURE
TRANSFORMATION IN MACHINE
LEARNING MODEL TRAINING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 63/600,505, filed on 17 Nov. 2023, and U.S.

Provisional Application No. 63/537,477, filed on 8 Sep.
2023, which are incorporated in their entireties by this
reference.

TECHNICAL FIELD

This 1invention relates generally to the machine learning
field, and more specifically, to new and useful systems and
methods for outlier detection and feature transformation in
machine learning model training.

BACKGROUND

Previous approaches for processing large datasets con-
taining historical values have typically involved basic outlier
detection techniques that rely on statistical measures such as
mean and standard deviation, and often struggle with com-
plex or high-dimensional data. As a result, the effectiveness
of outlier detection and subsequent data processing has been
limited, leading to potential inaccuracies in predictive mod-
cling and forecasting. In some cases, outlier detection algo-
rithms using fixed threshold values may misidentily outliers
in datasets with variable distributions, overlooking subtle
anomalies or 1naccurately flagging normal data points, thus
yielding suboptimal results and reducing utility 1n evolving,
real-world applications. Furthermore, existing techniques
for outlier detection and data processing often lack the
capability to eflectively separate outliers from the main
dataset while preserving important features for predictive
modeling.

Consequently, there remains a need 1n the art for more
sophisticated outlier filtration processes that can robustly
handle complex datasets and improve the quality of predic-
tive modeling outcomes. The embodiments of the present
application provide technical solutions that address, at least,

the needs described above, as well as the deficiencies of the
state of the art.

BRIEF SUMMARY OF THE INVENTION(S)

This summary 1s not mtended to identify only key or
essential features of the described subject matter, nor 1s 1t
intended to be used 1n 1solation to determine the scope of the
described subject matter. The subject matter should be
understood by reference to appropriate portions of the entire
specification of this patent application, any or all drawings,
and each claim.

The foregoing, together with other features and embodi-
ments, will become more apparent upon referring to the
following specification, claims, and accompanying draw-
ngs.

The disclosure describes at least the following unique
aspects, among others:

In some aspects, the techniques described herein relate to
a computer-program product including a non-transitory
machine-readable storage medium storing computer mnstruc-
tions that, when executed by one or more processors,
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2

perform operations including: obtaining a raw dataset
including a plurality of data samples that store historical
values of a target enfity; executing an outhlier filtration
process based on obtaining the raw dataset, wherein the
outhier filtration process includes: detecting, by a quantile-
based outlier filtration algorithm, outlier data samples of the
plurality of data samples that exceed a lower quantile
threshold or an upper quantile threshold, generating an
intermediate outlier-reduced dataset that includes a subset of
the plurality of data samples, wherein the intermediate
outlier-reduced dataset excludes the outlier data samples that
exceed the lower quantile threshold or the upper quantile
threshold, decomposing, by a matrix decomposition algo-
rithm, the intermediate outlier-reduced dataset 1into a trans-
formed features matrix and a sparse matrix, wherein the
transformed features matrix includes a plurality of feature
vectors of a plurality of principal components of the inter-
mediate outlier-reduced dataset; and generating a refined
outlier-reduced dataset that includes a subset of the plurality
of feature vectors, wherein the refined outlier-reduced data-
set excludes feature vectors of the transformed features
matrix that are associated with an anomalous value in the
sparse matrix; training a model using the refined outlier-
reduced dataset; and predicting, via the trained model, a
value of the target entity at a future time.

In some aspects, the techniques described herein relate to
a computer-program product, whereimn: the sparse matrix
includes a plurality of numerical entries, a respective feature
vector of the transformed features matrix 1s associated with
a respective numerical entry 1n the sparse matrix, a value of
the respective numerical entry 1s anomalous when the value
of the respective numerical entry corresponds to a non-zero
value, and the value of the respective numerical entry 1s not
anomalous when the value of the respective numerical entry
corresponds to a zero value.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: a subset of the plu-
rality of data samples 1n the raw dataset cause heteroske-
dasticity and skewness, the refined outlier-reduced dataset
excludes the subset of the plurality of data samples that
cause the heteroskedasticity and the skewness, and using the
refined outlier-reduced dataset to train the model mitigates
an 1mpact that the heteroskedasticity and the skewness have
on a weight and a bias of the model.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the quantile-based
outhier filtration algorithm detects that a first subset of the
plurality of data samples exceed the lower quantile threshold
and that a second subset of the plurality of data samples
exceed the upper quantile threshold, and the intermediate
outlier-reduced data set: excludes the outlier data samples
that exceed the lower quantile threshold and the upper
quantile threshold, including the first subset and the second
subset of the plurality of data samples, and includes data
samples of the plurality of data samples that are within the
lower quantile threshold and the upper quantile threshold.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the lower quantile
threshold and the upper quantile threshold are computed for
a first period of time within the raw dataset, the quantile-
based outlier filtration algorithm further computes a lower
quantile threshold and an upper quantile threshold for at
least a second period of time within the raw dataset, and
detecting, by the quantile-based outlier filtration algorithm,
includes: detecting the outlier data samples of the plurality
of data samples that exceed the lower quantile threshold and
the upper quantile threshold of the first period of time, and
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detecting outlier data samples of the plurality of data
samples that exceed the lower quantile threshold and the
upper quantile threshold of the second period of time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the raw dataset
includes a first number of dimensions, and the transformed

features matrix represents features of the itermediate out-
lier-reduced dataset, a subset of the raw dataset, using a
smaller number of dimensions than the first number of
dimensions.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the outhier filtration
process includes a plurality of outlier filtration stages,
including a first outhier filtration stage and a second outlier
filtration stage, the first outlier filtration stage 1s executed
before the second outlier filtration stage and includes: the
detecting of the outlier data samples that exceed the lower
quantile threshold or the upper quantile threshold, and the
generating of the intermediate outlier-reduced dataset, and
the second outlier filtration stage 1s executed after the first
outlier filtration stage and includes: the decomposing of the
intermediate outlier-reduced dataset, and the generating of
the refined outlier-reduced dataset.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the plurality of data
samples store the historical values of the target entity via a
demand value column, the lower quantile threshold 1s cal-
culated as a first quartile of the demand value column minus
a product between a pre-defined scaling factor and an
interquartile range of the demand value column, and the
upper quantile threshold 1s calculated as a third quartile of
the demand value column plus the product between the
pre-defined scaling factor and the interquartile range of the
demand value column.

In some aspects, the techniques described herein relate to
a computer-program product, wherein the interquartile range
of the demand value column 1s defined as a difference
between the third quartile of the demand value column and
the first quartile of the demand value column.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the target entity 1s an
energy commodity, the plurality of data samples are time
series data samples recorded at pre-defined intervals over a
period of time, and a historical value stored within a
respective data sample of the plurality of data samples
specifies a historical demand of the energy commodity at a
respective interval over the period of time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein a respective data
sample of the plurality of data samples includes: a respective
historical value of the target entity, and a plurality of features
for predicting the respective historical value.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the target entity 1s an
energy commodity, and predicting the value of the target
entity at the future time 1ncludes predicting a demand of the
energy commodity at the future time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein predicting the value
of the target entity at the future time 1ncludes: recerving, via
the tramned model, a model mput that at least specifies
teatures of the target entity during a period preceding the
tuture time; and predicting, via the trained model, the value
of the target enftity at the future time based at least on the
teatures of the target entity during the period preceding the
future time.
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In some aspects, the techniques described herein relate to
a computer-program product, wherein: the future time 1s 24
hours ahead of a current time, and the period preceding the
future time 1s the current time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein the features of the
target entity during the period preceding the future time at
least include: a demand of the target entity during the period
preceding the future time, and a load of the target entity
during the period preceding the future time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the features of the
target entity during the period preceding the future time
further include: an average load of the target entity during a
day associated with the period preceding the future time, and
the model mput further specifies temporal features associ-
ated with the future time, including: a numerical represen-
tation of a month associated with the future time, a numeri-
cal representation of a day of week associated with the future
time, a numerical representation of a day of month associ-
ated with the future time, and a numerical representation of
a day of year associated with the future time.

In some aspects, the techniques described herein relate to
a computer-program product, wherein: the matrix decom-
position algorithm 1s a robust principal component analysis
algorithm (RPCA), the robust principal component analysis
algorithm (RPCA) solves an optimization formula to decom-
pose the mtermediate outlier-reduced dataset into the trans-
formed features matrix and the sparse matrix, and an objec-
tive of the optimization formula 1s to mimmize a nuclear
norm ||L|[* of the transformed features matrix and an 11 norm
IS[|1 of the sparse matrix, formulated as minimize ILI+AISI1,
wherein: A 1s a regularization parameter that 1s computed as
1//n, and n is a number of observations in the intermediate
outhier-reduced dataset.

In some aspects, the techniques described herein relate to
a computer-implemented method including: obtaining a raw
dataset including a plurality of data samples that store
historical values of a target entity; executing an outlier
filtration process based on obtaining the raw dataset,
wherein the outlier filtration process includes: detecting, by
a quantile-based outlier filtration algorithm, outlier data
samples of the plurality of data samples that exceed a lower
quantile threshold or an upper quantile threshold, generating
an mtermediate outlier-reduced dataset that includes a subset
of the plurality of data samples, wherein the intermediate
outlier-reduced dataset excludes the outlier data samples that
exceed the lower quantile threshold or the upper quantile
threshold, decomposing, by a matrix decomposition algo-
rithm, the intermediate outlier-reduced dataset into a trans-
formed features matrix and a sparse matrix, wherein the
transformed features matrix includes a plurality of feature
vectors of a plurality of principal components of the inter-
mediate outlier-reduced dataset; and generating a refined
outlier-reduced dataset that includes a subset of the plurality
of feature vectors, wherein the refined outlier-reduced data-
set excludes feature vectors of the transformed features
matrix that are associated with an anomalous value in the
sparse matrix; training a model using the refined outlier-
reduced dataset; and predicting, via the trained model, a
value of the target entity at a future time.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: the sparse
matrix icludes a plurality of numerical entries, a respective
feature vector of the transtormed features matrix 1s associ-
ated with a respective numerical entry 1n the sparse matrix,
a value of the respective numerical entry 1s anomalous when
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the value of the respective numerical entry corresponds to a
non-zero value, and the value of the respective numerical
entry 1s not anomalous when the value of the respective
numerical entry corresponds to a zero value.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: a subset of the
plurality of data samples 1n the raw dataset cause heteroske-
dasticity and skewness, the refined outlier-reduced dataset
excludes the subset of the plurality of data samples that
cause the heteroskedasticity and the skewness, and using the
refined outlier-reduced dataset to train the model mitigates
an 1mpact that the heteroskedasticity and the skewness have
on a weight and a bias of the model.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: the quantile-
based outlier filtration algorithm detects that a first subset of
the plurality of data samples exceed the lower quantile
threshold and that a second subset of the plurality of data
samples exceed the upper quantile threshold, and the inter-
mediate outlier-reduced data set: excludes the outlier data
samples that exceed the lower quantile threshold and the
upper quantile threshold, including the first subset and the
second subset of the plurality of data samples, and includes
data samples of the plurality of data samples that are within
the lower quantile threshold and the upper quantile thresh-
old.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: the lower quan-
tile threshold and the upper quantile threshold are computed
for a first period of time within the raw dataset, the quantile-
based outlier filtration algorithm further computes a lower
quantile threshold and an upper quantile threshold for at
least a second period of time within the raw dataset, and
detecting, by the quantile-based outlier filtration algorithm,
includes: detecting the outlier data samples of the plurality
of data samples that exceed the lower quantile threshold and
the upper quantile threshold of the first period of time, and
detecting outhier data samples of the plurality of data
samples that exceed the lower quantile threshold and the
upper quantile threshold of the second period of time.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: the raw dataset
includes a first number of dimensions, and the transformed
features matrix represents features of the intermediate out-
lier-reduced dataset, a subset of the raw dataset, using a
smaller number of dimensions than the first number of
dimensions.

In some aspects, the techniques described herein relate to
a computer-implemented method, wherein: the outlier {il-
tration process includes a plurality of outlier filtration stages,
including a first outhier filtration stage and a second outlier
filtration stage, the first outlier filtration stage 1s executed
before the second outlier filtration stage and includes: the
detecting of the outlier data samples that exceed the lower
quantile threshold or the upper quantile threshold, and the
generating of the intermediate outlier-reduced dataset, and
the second outlier filtration stage 1s executed after the first
outlier filtration stage and includes: the decomposing of the
intermediate outlier-reduced dataset, and the generating of
the refined outlier-reduced dataset.

In some aspects, the techniques described herein relate to
a computer-implemented system including: one or more
processors; a memory; a computer-readable medium oper-
ably coupled to the one or more processors, the computer-
readable medium having computer-readable instructions
stored thereon that, when executed by the one or more
processors, cause a computing device to perform operations
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including: obtaining a raw dataset including a plurality of
data samples that store historical values of a target entity;
executing an outlier filtration process based on obtaining the
raw dataset, wherein the outlier filtration process includes:
detecting, by a quantile-based outhier filtration algorithm,
outlier data samples of the plurality of data samples that
exceed a lower quantile threshold or an upper quantile
threshold, generating an intermediate outlier-reduced dataset
that includes a subset of the plurality of data samples,
wherein the intermediate outlier-reduced dataset excludes
the outlier data samples that exceed the lower quantile
threshold or the upper quantile threshold, decomposing, by
a matrix decomposition algorithm, the imntermediate outlier-
reduced dataset into a transformed features matrix and a
sparse matrix, wherein the transformed features matrix
includes a plurality of feature vectors of a plurality of
principal components of the intermediate outlier-reduced
dataset; and generating a refined outlier-reduced dataset that
includes a subset of the plurality of feature vectors, wherein
the refined outlier-reduced dataset excludes feature vectors
of the transformed features matrix that are associated with
an anomalous value 1n the sparse matrix; training a model
using the refined outlier-reduced dataset; and predicting, via
the trained model, a value of the target entity at a future time.

In some aspects, the techniques described herein relate to
a computer-implemented system, wherein: the sparse matrix
includes a plurality of numerical entries, a respective feature
vector of the transformed features matrix 1s associated with
a respective numerical entry 1n the sparse matrix, a value of
the respective numerical entry 1s anomalous when the value
of the respective numerical entry corresponds to a non-zero
value, and the value of the respective numerical entry 1s not
anomalous when the value of the respective numerical entry
corresponds to a zero value.

In some aspects, the techniques described herein relate to
a computer-implemented system, wherein: a subset of the
plurality of data samples 1n the raw dataset cause heteroske-
dasticity and skewness, the refined outlier-reduced dataset
excludes the subset of the plurality of data samples that
cause the heteroskedasticity and the skewness, and using the
refined outlier-reduced dataset to train the model mitigates
an 1mpact that the heteroskedasticity and the skewness have
on a weight and a bias of the model.

In some aspects, the techniques described herein relate to
a computer-implemented system, wherein: the quantile-
based outlier filtration algorithm detects that a first subset of
the plurality of data samples exceed the lower quantile
threshold and that a second subset of the plurality of data
samples exceed the upper quantile threshold, and the inter-
mediate outlier-reduced data set: excludes the outlier data
samples that exceed the lower quantile threshold and the
upper quantile threshold, including the first subset and the
second subset of the plurality of data samples, and includes
data samples of the plurality of data samples that are within
the lower quantile threshold and the upper quantile thresh-
old.

In some aspects, the techniques described herein relate to
a computer-implemented system, wherein: the lower quan-
tile threshold and the upper quantile threshold are computed
for a first period of time within the raw dataset, the quantile-
based outlier filtration algorithm further computes a lower
quantile threshold and an upper quantile threshold for at
least a second period of time within the raw dataset, and
detecting, by the quantile-based outlier filtration algorithm,
includes: detecting the outlier data samples of the plurality
of data samples that exceed the lower quantile threshold and
the upper quantile threshold of the first period of time, and
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detecting outlier data samples of the plurality of data
samples that exceed the lower quantile threshold and the

upper quantile threshold of the second period of time.

In some aspects, the techniques described herein relate to
a computer-implemented system, wherein: the raw dataset
includes a first number of dimensions, and the transformed
features matrix represents features of the intermediate out-
lier-reduced dataset, a subset of the raw dataset, using a
smaller number of dimensions than the first number of
dimensions.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s described 1n conjunction with
the appended figures:

FIG. 1 1llustrates a block diagram that provides an 1llus-
tration of the hardware components of a computing system,
according to some embodiments of the present technology;

FIG. 2 illustrates an example network including an
example set of devices communicating with each other over
an exchange system and via a network, according to some
embodiments of the present technology;

FIG. 3 illustrates a representation of a conceptual model
of a communications protocol system, according to some
embodiments of the present technology;

FIG. 4 1llustrates a communications grid computing sys-
tem 1ncluding a variety of control and worker nodes, accord-
ing to some embodiments of the present technology;

FIG. 5 1llustrates a flow chart showing an example process
for adjusting a communications grid or a work project 1n a
communications grid after a failure of a node, according to
some embodiments of the present technology;

FIG. 6 1llustrates a portion of a commumications grid
computing system including a control node and a worker
node, according to some embodiments of the present tech-
nology;

FI1G. 7 illustrates a flow chart showing an example process
for executing a data analysis or processing project, accord-
ing to some embodiments of the present technology;

FIG. 8 illustrates a block diagram including components
of an Event Stream Processing Engine (ESPE), according to
embodiments of the present technology;

FIG. 9 1llustrates a flow chart showing an example process
including operations performed by an event stream process-
ing engine, according to some embodiments of the present
technology;

FIG. 10 illustrates an ESP system interfacing between a
publishing device and multiple event subscribing devices,
according to some embodiments of the present technology;

FI1G. 11 illustrates a flow chart of an example of a process
for generating and using a machine-learning model accord-
ing to some aspects, according to some embodiments of the
present technology;

FIG. 12 illustrates an example of a machine-learning
model as a neural network, according to some embodiments
of the present technology;

FIG. 13 1llustrates various aspects of the use of containers
as a mechanism to allocate processing, storage and/or other
resources of a processing system to the performance of
various analyses, according to some embodiments of the
present technology;

FIG. 14 illustrates a method for detecting and removing
outliers 1n a raw dataset, according to some embodiments of
the present technology;

FIG. 15A illustrates an example of a raw energy demand
dataset, according to some embodiments of the present
technology;
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FIG. 15B illustrates example statistics of a raw energy
demand dataset, according to some embodiments of the
present technology;

FIG. 16A 1llustrates an example of a multi-stage outlier
filtration process, according to some embodiments of the
present technology;

FIGS. 16B-1 and 16B-2 illustrate an example schematic
for generating an intermediate outlier-reduced dataset,
according to some embodiments of the present technology;

FIGS. 16C-1 and 16C-2 illustrate an example schematic
for generating a refined outlier-reduced dataset, according to
some embodiments of the present technology;

FIG. 17A 1llustrates example skewness levels 1 a raw
dataset, according to some embodiments of the present
technology;

FIG. 17B illustrates example skewness levels 1 a raw
dataset after executing one or more outlier removal methods,
according to some embodiments of the present technology;

FIG. 18A illustrates a process for training a model using
a refined outlier-reduced dataset, according to some embodi-
ments of the present technology;

FIG. 18B illustrates an example schematic for predicting
a future value with a trained machine learning model,
according to some embodiments of the present technology;

FIG. 18C illustrates an example process for generating an
input to a machine learning model, according to some
embodiments of the present technology; and

FIGS. 18D-1 and 18D-2 1llustrate a performance of vari-
ous trammed machine learning models, according to some
embodiments of the present technology.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following description of the preferred embodiments
of the inventions are not intended to limit the inventions to
these preferred embodiments, but rather to enable any per-
son skilled in the art to make and use these inventions.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, specific details are set forth in order to provide a
thorough understanding of embodiments of the technology.
However, 1t will be apparent that various embodiments may
be practiced without these specific details. The figures and
description are not intended to be restrictive.

The ensuing description provides example embodiments
only, and 1s not intended to limit the scope, applicability, or
configuration of the disclosure. Rather, the ensuing descrip-
tion of the example embodiments will provide those skilled
in the art with an enabling description for implementing an
example embodiment. It should be understood that various
changes may be made 1n the function and arrangement of
clements without departing from the spirit and scope of the
technology as set forth in the appended claims.

Specific details are given 1n the following description to
provide a thorough understanding of the embodiments.
However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these
specific details. For example, circuits, systems, networks,
processes, and other components may be shown as compo-
nents 1n block diagram form in order not to obscure the
embodiments in unnecessary detail. In other instances, well-
known circuits, processes, algorithms, structures, and tech-
niques may be shown without unnecessary detail 1n order to
avoild obscuring the embodiments.
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Also, 1t 1s noted that imndividual embodiments may be
described as a process which 1s depicted as a tflowchart, a

flow diagram, a data flow diagram, a structure diagram, or
a block diagram. Although a flowchart may describe the
operations as a sequential process, many of the operations
can be performed 1n parallel or concurrently. In addition, the
order of the operations may be re-arranged. A process 1s
terminated when 1ts operations are completed, but could
have additional operations not included 1n a figure. A process
may correspond to a method, a function, a procedure, a
subroutine, a subprogram, etc. When a process corresponds
to a function, its termination can correspond to a return of
the function to the calling function or the main function.

Example Systems

Systems depicted in some of the figures may be provided
in various configurations. In some embodiments, the sys-
tems may be configured as a distributed system where one
or more components of the system are distributed across one
or more networks 1 a cloud computing system.

FIG. 1 1s a block diagram that provides an illustration of
the hardware components of a data transmission network
100, according to embodiments of the present technology.
Data transmission network 100 1s a specialized computer
system that may be used for processing large amounts of
data where a large number of computer processing cycles are
required.

Data transmission network 100 may also include com-
puting environment 114. Computing environment 114 may
be a specialized computer or other machine that processes
the data received within the data transmission network 100.
Data transmission network 100 also includes one or more
network devices 102. Network devices 102 may include
client devices that attempt to communicate with computing
environment 114. For example, network devices 102 may
send data to the computing environment 114 to be processed,
may send signals to the computing environment 114 to
control different aspects of the computing environment or
the data 1t 1s processing, among other reasons. Network
devices 102 may interact with the computing environment
114 through a number of ways, such as, for example, over
one or more networks 108. As shown 1n FIG. 1, computing
environment 114 may include one or more other systems.
For example, computing environment 114 may include a
database system 118 and/or a communications grid 120.

In other embodiments, network devices may provide a
large amount of data, either all at once or streaming over a
period of time (e.g., using event stream processing (ESP),
described further with respect to FIGS. 8-10), to the com-
puting environment 114 via networks 108. For example,
network devices 102 may include network computers, sen-
sors, databases, or other devices that may transmit or oth-
erwise provide data to computing environment 114. For
example, network devices may include local area network
devices, such as routers, hubs, switches, or other computer
networking devices. These devices may provide a variety of
stored or generated data, such as network data or data
specific to the network devices themselves. Network devices
may also include sensors that monitor their environment or
other devices to collect data regarding that environment or
those devices, and such network devices may provide data
they collect over time. Network devices may also include
devices within the internet of things, such as devices within
a home automation network. Some of these devices may be
referred to as edge devices, and may mvolve edge comput-
ing circuitry. Data may be transmitted by network devices
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directly to computing environment 114 or to network-
attached data stores, such as network-attached data stores
110 for storage so that the data may be retrieved later by the
computing environment 114 or other portions of data trans-
mission network 100.

Data transmission network 100 may also include one or
more network-attached data stores 110. Network-attached
data stores 110 are used to store data to be processed by the
computing environment 114 as well as any intermediate or
final data generated by the computing system 1n non-volatile
memory. However 1n certain embodiments, the configura-
tion of the computing environment 114 allows its operations
to be performed such that intermediate and final data results
can be stored solely 1n volatile memory (e.g., RAM), with-
out a requirement that intermediate or final data results be
stored to non-volatile types of memory (e.g., disk). This can
be useful 1n certain situations, such as when the computing
environment 114 receives ad hoc queries from a user and
when responses, which are generated by processing large
amounts of data, need to be generated on-the-fly. In this
non-limiting situation, the computing environment 114 may
be configured to retain the processed information within
memory so that responses can be generated for the user at
different levels of detail as well as allow a user to interac-
tively query against this information.

Network-attached data stores may store a variety of
different types of data organized in a variety of different
ways and from a variety of diflerent sources. For example,
network-attached data storage may include storage other
than primary storage located within computing environment
114 that 1s directly accessible by processors located therein.
Network-attached data storage may include secondary, ter-
tiary or auxiliary storage, such as large hard drives, servers,
virtual memory, among other types. Storage devices may
include portable or non-portable storage devices, optical
storage devices, and various other mediums capable of
storing, containing data. A machine-readable storage
medium or computer-readable storage medium may include
a non-transitory medium 1n which data can be stored and that
does not include carrier waves and/or transitory electronic
signals. Examples of a non-transitory medium may include,
for example, a magnetic disk or tape, optical storage media
such as compact disk or digital versatile disk, tlash memory,
memory or memory devices. A computer-program product
may include code and/or machine-executable instructions
that may represent a procedure, a function, a subprogram, a
program, a routine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc. may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, network transmission,
among others. Furthermore, the data stores may hold a
variety of different types of data. For example, network-
attached data stores 110 may hold unstructured (e.g., raw)
data, such as manufacturing data (e.g., a database containing
records 1dentifying products being manufactured with
parameter data for each product, such as colors and models)
or product sales databases (e.g., a database containing 1ndi-
vidual data records 1dentitying details of individual product
sales).

The unstructured data may be presented to the computing,
environment 114 1n different forms such as a flat file or a
conglomerate of data records, and may have data values and
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accompanying time stamps. The computing environment
114 may be used to analyze the unstructured data 1n a variety
of ways to determine the best way to structure (e.g., hier-
archically) that data, such that the structured data 1s tailored
to a type of further analysis that a user wishes to perform on
the data. For example, after being processed, the unstruc-
tured time stamped data may be aggregated by time (e.g.,
into daily time period umits) to generate time series data
and/or structured hierarchically according to one or more
dimensions (e.g., parameters, attributes, and/or variables).
For example, data may be stored in a hierarchical data
structure, such as a ROLAP OR MOLAP database, or may
be stored 1n another tabular form, such as 1n a tlat-hierarchy
form.

Data transmission network 100 may also include one or
more server farms 106. Computing environment 114 may
route select communications or data to the one or more sever
tarms 106 or one or more servers within the server farms.
Server farms 106 can be configured to provide mnformation
in a predetermined manner. For example, server farms 106
may access data to transmit 1n response to a communication.
Server farms 106 may be separately housed from each other
device within data transmission network 100, such as com-
puting environment 114, and/or may be part of a device or
system.

Server farms 106 may host a variety of different types of
data processing as part of data transmission network 100.
Server farms 106 may receive a variety of different data
from network devices, from computing environment 114,
from cloud network 116, or from other sources. The data
may have been obtained or collected from one or more
sensors, as mputs from a control database, or may have been
received as mputs from an external system or device. Server
farms 106 may assist 1n processing the data by turning raw
data 1nto processed data based on one or more rules 1mple-
mented by the server farms. For example, sensor data may
be analyzed to determine changes 1n an environment over
time or 1n real-time.

Data transmission network 100 may also include one or
more cloud networks 116. Cloud network 116 may include
a cloud infrastructure system that provides cloud services. In
certain embodiments, services provided by the cloud net-
work 116 may include a host of services that are made
available to users of the cloud infrastructure system on
demand. Cloud network 116 1s shown 1n FIG. 1 as being
connected to computing environment 114 (and therefore
having computing environment 114 as its client or user), but
cloud network 116 may be connected to or utilized by any
of the devices 1n FIG. 1. Services provided by the cloud
network can dynamically scale to meet the needs of 1ts users.
The cloud network 116 may include one or more computers,
servers, and/or systems. In some embodiments, the comput-
ers, servers, and/or systems that make up the cloud network
116 are different from the user’s own on-premises comput-
ers, servers, and/or systems. For example, the cloud network
116 may host an application, and a user may, via a commu-
nication network such as the Internet, on demand, order and
use the application.

While each device, server and system 1n FIG. 1 1s shown
as a single device, it will be appreciated that multiple
devices may 1nstead be used. For example, a set of network
devices can be used to transmit various communications
from a single user, or remote server 140 may include a server
stack. As another example, data may be processed as part of
computing environment 114.

Each communication within data transmission network
100 (e.g., between client devices, between servers 106 and
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computing environment 114 or between a server and a
device) may occur over one or more networks 108. Net-
works 108 may include one or more of a variety of diflerent
types of networks, including a wireless network, a wired
network, or a combination of a wired and wireless network.

Examples of suitable networks include the Internet, a per-
sonal area network, a local area network (LAN), a wide area
network (WAN), or a wireless local area network (WLAN).
A wireless network may include a wireless interface or
combination of wireless interfaces. As an example, a net-
work 1n the one or more networks 108 may include a

short-range communication channel, such as a BLU-
ETOOTH® communication channel or a BLUETOOTH®
LOW Energy communication channel. A wired network may
include a wired interface. The wired and/or wireless net-
works may be implemented using routers, access points,
bridges, gateways, or the like, to connect devices in the
network 114, as will be further described with respect to
FIG. 2. The one or more networks 108 can be incorporated
entirely within or can include an intranet, an extranet, or a
combination thereof. In one embodiment, communications
between two or more systems and/or devices can be
achieved by a secure communications protocol, such as
secure sockets layer (SSL) or transport layer security (TLS).
In addition, data and/or transactional details may be
encrypted.

Some aspects may utilize the Internet of Things (IoT),
where things (e.g., machines, devices, phones, sensors) can
be connected to networks and the data from these things can
be collected and processed within the things and/or external
to the things. For example, the IoT can include sensors in
many different devices, and high value analytics can be
applied to 1dentify hidden relationships and drive increased
clliciencies. This can apply to both big data analytics and
real-time (e.g., ESP) analytics. This will be described further
below with respect to FIG. 2.

As noted, computing environment 114 may include a
communications grid 120 and a transmission network data-
base system 118. Communications grid 120 may be a
orid-based computing system for processing large amounts
of data. The transmission network database system 118 may
be for managing, storing, and retrieving large amounts of
data that are distributed to and stored in the one or more
network-attached data stores 110 or other data stores that
reside at different locations within the transmission network
database system 118. The compute nodes 1n the grid-based
computing system 120 and the transmission network data-
base system 118 may share the same processor hardware,
such as processors that are located within computing envi-
ronment 114.

FIG. 2 illustrates an example network including an
example set of devices communicating with each other over
an exchange system and via a network, according to embodi-
ments of the present technology. As noted, each communi-
cation within data transmission network 100 may occur over
one or more networks. System 200 includes a network
device 204 configured to communicate with a variety of
types of client devices, for example client devices 230, over
a variety of types ol communication channels.

As shown 1n FIG. 2, network device 204 can transmit a
communication over a network (e.g., a cellular network via
a base station 210). The communication can be routed to
another network device, such as network devices 205-209,
via base station 210. The communication can also be routed
to computing environment 214 via base station 210. For
example, network device 204 may collect data either from
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its surrounding environment or from other network devices
(such as network devices 205-209) and transmit that data to
computing environment 214.

Although network devices 204-209 are shown in FIG. 2
as a mobile phone, laptop computer, tablet computer, tem-
perature sensor, motion sensor, and audio sensor respec-
tively, the network devices may be or include sensors that
are sensitive to detecting aspects of their environment. For
example, the network devices may include sensors such as
water sensors, power sensors, electrical current sensors,
chemical sensors, optical sensors, pressure sensors, geo-
graphic or position sensors (e.g., GPS), velocity sensors,
acceleration sensors, flow rate sensors, among others.
Examples of characteristics that may be sensed include
force, torque, load, strain, position, temperature, air pres-
sure, fluid tflow, chemical properties, resistance, electromag-
netic fields, radiation, irradiance, proximity, acoustics, mois-
ture, distance, speed, vibrations, acceleration, electrical
potential, and electrical current, among others. The sensors
may be mounted to various components used as part of a
variety ol different types of systems (e.g., an o1l drilling
operation). The network devices may detect and record data
related to the environment that it monitors, and transmit that
data to computing environment 214.

As noted, one type of system that may include various
sensors that collect data to be processed and/or transmitted
to a computing environment according to certain embodi-
ments includes an o1l drilling system. For example, the one
or more drnlling operation sensors may include surface
sensors that measure a hook load, a fluid rate, a temperature
and a density 1 and out of the wellbore, a standpipe
pressure, a surface torque, a rotation speed of a drill pipe, a
rate of penetration, a mechanical specific energy, etc. and
downhole sensors that measure a rotation speed of a bit, fluid
densities, downhole torque, downhole vibration (axial, tan-
gential, lateral), a weight applied at a drill bit, an annular
pressure, a diflerential pressure, an azimuth, an inclination,
a dog leg severity, a measured depth, a vertical depth, a
downhole temperature, etc. Besides the raw data collected
directly by the sensors, other data may include parameters
either developed by the sensors or assigned to the system by
a client or other controlling device. For example, one or
more drilling operation control parameters may control
settings such as a mud motor speed to flow ratio, a bit
diameter, a predicted formation top, seismic data, weather
data, etc. Other data may be generated using physical
models such as an earth model, a weather model, a seismic
model, a bottom hole assembly model, a well plan model, an
annular friction model, etc. In addition to sensor and control
settings, predicted outputs, of for example, the rate of
penetration, mechanical specific energy, hook load, flow in
fluid rate, tlow out tluid rate, pump pressure, surface torque,
rotation speed of the dnll pipe, annular pressure, annular
friction pressure, annular temperature, equivalent circulating
density, etc. may also be stored 1n the data warehouse.

In another example, another type of system that may
include various sensors that collect data to be processed
and/or transmitted to a computing environment according to
certain embodiments includes a home automation or similar
automated network in a diflerent environment, such as an
oflice space, school, public space, sports venue, or a variety
ol other locations. Network devices 1n such an automated
network may include network devices that allow a user to
access, control, and/or configure various home appliances
located within the user’s home (e.g., a television, radio,
light, fan, humidifier, sensor, microwave, 1ron, and/or the
like), or outside of the user’s home (e.g., exterior motion

10

15

20

25

30

35

40

45

50

55

60

65

14

sensors, exterior lighting, garage door openers, sprinkler
systems, or the like). For example, network device 102 may
include a home automation switch that may be coupled with
a home appliance. In another embodiment, a network device
can allow a user to access, control, and/or configure devices,
such as oflice-related devices (e.g., copy machine, printer, or
fax machine), audio and/or video related devices (e.g., a
receiver, a speaker, a projector, a DVD player, or a televi-
s1on), media-playback devices (e.g., a compact disc player,
a CD player, or the like), computing devices (e.g., a home
computer, a laptop computer, a tablet, a personal digital
assistant (PDA), a computing device, or a wearable device),
lighting devices (e.g., a lamp or recessed lighting), devices
associated with a security system, devices associated with an
alarm system, devices that can be operated in an automobile
(e.g., radio devices, navigation devices), and/or the like.

Data may be collected from such various sensors 1n raw
form, or data may be processed by the sensors to create
parameters or other data either developed by the sensors
based on the raw data or assigned to the system by a client
or other controlling device.

In another example, another type of system that may
include various sensors that collect data to be processed
and/or transmitted to a computing environment according to
certain embodiments includes a power or energy grnd. A
variety of different network devices may be included i an
energy grid, such as various devices within one or more
power plants, energy farms (e.g., wind farm, solar farm,
among others) energy storage facilities, factories, homes and
businesses of consumers, among others. One or more of
such devices may include one or more sensors that detect
energy gain or loss, electrical input or output or loss, and a
variety of other etliciencies. These sensors may collect data
to inform users of how the energy grid, and individual
devices within the grid, may be functioning and how they
may be made more eflicient.

Network device sensors may also perform processing on
data 1t collects before transmitting the data to the computing
environment 114, or before deciding whether to transmait
data to the computing environment 114. For example, net-
work devices may determine whether data collected meets
certain rules, for example by comparing data or values
calculated from the data and comparing that data to one or
more thresholds. The network device may use this data
and/or comparisons to determine 1f the data should be
transmitted to the computing environment 214 for further
use or processing.

Computing environment 214 may include machines 220
and 240. Although computing environment 214 1s shown 1n
FIG. 2 as having two machines, 220 and 240, computing
environment 214 may have only one machine or may have
more than two machines. The machines that make up
computing environment 214 may include specialized com-
puters, servers, or other machines that are configured to
individually and/or collectively process large amounts of
data. The computing environment 214 may also include
storage devices that include one or more databases of
structured data, such as data organized in one or more
hierarchies, or unstructured data. The databases may com-
municate with the processing devices within computing
environment 214 to distribute data to them. Since network
devices may transmit data to computing environment 214,
that data may be received by the computing environment
214 and subsequently stored within those storage devices.
Data used by computing environment 214 may also be
stored 1n data stores 235, which may also be a part of or
connected to computing environment 214.
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Computing environment 214 can communicate with vari-
ous devices via one or more routers 225 or other inter-
network or intra-network connection components. For
example, computing environment 214 may communicate
with devices 230 via one or more routers 225. Computing,
environment 214 may collect, analyze and/or store data from

or pertaining to communications, client device operations,
client rules, and/or user-associated actions stored at one or
more data stores 235. Such data may influence communi-
cation routing to the devices within computing environment
214, how data 1s stored or processed within computing
environment 214, among other actions.

Notably, various other devices can further be used to
influence communication routing and/or processing between
devices within computing environment 214 and with devices
outside of computing environment 214. For example, as
shown 1n FIG. 2, computing environment 214 may include
a web server 240. Thus, computing environment 214 can
retrieve data of interest, such as client information (e.g.,
product information, client rules, etc.), technical product
details, news, current or predicted weather, and so on.

In addition to computing environment 214 collecting data
(e.g., as recerved from network devices, such as sensors, and
client devices or other sources) to be processed as part of a
big data analytics project, it may also receive data 1n real
time as part of a streaming analytics environment. As noted,
data may be collected using a variety of sources as com-
municated via different kinds of networks or locally. Such
data may be received on a real-time streaming basis. For
example, network devices may receirve data periodically
from network device sensors as the sensors continuously
sense, monitor and track changes in their environments.
Devices within computing environment 214 may also per-
form pre-analysis on data it receives to determine 11 the data
received should be processed as part of an ongoing project.
The data received and collected by computing environment
214, no matter what the source or method or timing of
receipt, may be processed over a period of time for a client
to determine results data based on the client’s needs and
rules.

FIG. 3 1llustrates a representation of a conceptual model
of a communications protocol system, according to embodi-
ments of the present technology. More specifically, FIG. 3
identifies operation of a computing environment 1n an Open
Systems Interaction model that corresponds to various con-
nection components. The model 300 shows, for example,
how a computing environment, such as computing environ-
ment 314 (or computing environment 214 1 FIG. 2) may
communicate with other devices 1n i1ts network, and control
how communications between the computing environment
and other devices are executed and under what conditions.

The model can include layers 301-307. The layers are
arranged 1n a stack. Each layer 1n the stack serves the layer
one level higher than 1t (except for the application layer,
which 1s the highest layer), and 1s served by the layer one
level below 1t (except for the physical layer, which 1s the
lowest layer). The physical layer 1s the lowest layer because
it recerves and transmits raw bites of data, and 1s the farthest
layer from the user in a communications system. On the
other hand, the application layer 1s the highest layer because
it interacts directly with a software application.

As noted, the model includes a physical layer 301. Physi-
cal layer 301 represents physical communication, and can
define parameters of that physical communication. For
example, such physical communication may come in the
form of electrical, optical, or electromagnetic signals. Physi-
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cal layer 301 also defines protocols that may control com-
munications within a data transmission network.

Link layer 302 defines links and mechanisms used to
transmit (1.e., move) data across a network. The link layer
302 manages node-to-node communications, such as within
a grid computing environment. Link layer 302 can detect
and correct errors (e.g., transmission errors in the physical
layer 301). Link layer 302 can also include a media access
control (MAC) layer and logical link control (LLC) layer.

Network layer 303 defines the protocol for routing within
a network. In other words, the network layer coordinates
transferring data across nodes in a same network (e.g., such
as a grid computing environment). Network layer 303 can
also define the processes used to structure local addressing
within the network.

Transport layer 304 can manage the transmission of data
and the quality of the transmission and/or receipt of that
data. Transport layer 304 can provide a protocol for trans-
ferring data, such as, for example, a Transmission Control
Protocol (TCP). Transport layer 304 can assemble and
disassemble data frames for transmission. The transport
layer can also detect transmission errors occurring in the
layers below it.

Session layer 305 can establish, maintain, and manage
communication connections between devices on a network.
In other words, the session layer controls the dialogues or
nature ol communications between network devices on the
network. The session layer may also establish checkpoint-
ing, adjournment, termination, and restart procedures.

Presentation layer 306 can provide translation for com-
munications between the application and network layers. In
other words, this layer may encrypt, decrypt and/or format
data based on data types and/or encodings known to be
accepted by an application or network layer.

Application layer 307 interacts directly with software
applications and end users, and manages communications
between them. Application layer 307 can 1dentily destina-
tions, local resource states or availability and/or communi-
cation content or formatting using the applications.

Intra-network connection components 321 and 322 are
shown to operate 1n lower levels, such as physical layer 301
and link layer 302, respectively. For example, a hub can
operate 1n the physical layer, a switch can operate in the link
layer, and a router can operate 1n the network layer. Inter-
network connection components 323 and 328 are shown to
operate on higher levels, such as layers 303-307. For
example, routers can operate in the network layer and
network devices can operate 1 the transport, session, pre-
sentation, and application layers.

As noted, a computing environment 314 can interact with
and/or operate on, 1n various embodiments, one, more, all or
any of the various layers. For example, computing environ-
ment 314 can interact with a hub (e.g., via the link layer) so
as to adjust which devices the hub communicates with. The
physical layer may be served by the link laver, so it may
implement such data from the link layer. For example, the
computing environment 314 may control which devices it
will receive data from. For example, 1if the computing
environment 314 knows that a certain network device has
turned off, broken, or otherwise become unavailable or
unreliable, the computing environment 314 may instruct the
hub to prevent any data from being transmitted to the
computing environment 314 from that network device. Such
a process may be beneficial to avoid receiving data that 1s
inaccurate or that has been influenced by an uncontrolled
environment. As another example, computing environment
314 can communicate with a bridge, switch, router or




US 12,190,219 Bl

17

gateway and mfluence which device within the system (e.g.,
system 200) the component selects as a destination. In some
embodiments, computing environment 314 can interact with
various layers by exchanging communications with equip-
ment operating on a particular layer by routing or modifying
existing commumnications. In another embodiment, such as 1n
a grid computing environment, a node may determine how
data within the environment should be routed (e.g., which
node should receive certain data) based on certain param-
cters or mmformation provided by other layers within the
model.

As noted, the computing environment 314 may be a part
of a communications grid environment, the communications
of which may be implemented as shown 1n the protocol of
FIG. 3. For example, referring back to FIG. 2, one or more
of machines 220 and 240 may be part of a communications
orid computing environment. A gridded computing environ-
ment may be employed 1n a distributed system with non-
interactive workloads where data resides in memory on the
machines, or compute nodes. In such an environment, ana-
lytic code, instead of a database management system, con-
trols the processing performed by the nodes. Data 1s co-
located by pre-distributing 1t to the grid nodes, and the
analytic code on each node loads the local data into memory.
Each node may be assigned a particular task such as a
portion of a processing project, or to organize or control
other nodes within the grid.

FIG. 4 1llustrates a communications grid computing sys-
tem 400 including a variety of control and worker nodes,
according to embodiments of the present technology. Com-
munications grid computing system 400 includes three con-
trol nodes and one or more worker nodes. Communications
orid computing system 400 includes control nodes 402, 404,
and 406. The control nodes are communicatively connected
via communication paths 451, 453, and 455. Therelore, the
control nodes may transmit information (e.g., related to the
communications grid or notifications), to and receive inifor-
mation from each other. Although communications grid
computing system 400 1s shown 1n FIG. 4 as including three
control nodes, the communications grid may include more
or less than three control nodes.

Communications grid computing system (or just “com-
munications grid”) 400 also includes one or more worker
nodes. Shown i FIG. 4 are six worker nodes 410-420.
Although FIG. 4 shows s1x worker nodes, a communications
orid according to embodiments of the present technology
may include more or less than six worker nodes. The number
of worker nodes included 1n a communications grid may be
dependent upon how large the project or data set 1s being
processed by the communications grid, the capacity of each
worker node, the time designated for the communications
orid to complete the project, among others. Each worker
node within the communications grid 400 may be connected
(wired or wirelessly, and directly or indirectly) to control
nodes 402-406. Therefore, each worker node may receive
information from the control nodes (e.g., an instruction to
perform work on a project) and may transmit information to
the control nodes (e.g., a result from work performed on a
project). Furthermore, worker nodes may communicate with
cach other (either directly or indirectly). For example,
worker nodes may transmit data between each other related
to a job being performed or an individual task within a job
being performed by that worker node. However, in certain
embodiments, worker nodes may not, for example, be con-
nected (communicatively or otherwise) to certain other
worker nodes. In an embodiment, worker nodes may only be
able to communicate with the control node that controls it,
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and may not be able to communicate with other worker
nodes 1n the communications grid, whether they are other
worker nodes controlled by the control node that controls the
worker node, or worker nodes that are controlled by other
control nodes 1n the communications grid.

A control node may connect with an external device with
which the control node may communicate (e.g., a grid user,
such as a server or computer, may connect to a controller of
the grid). For example, a server or computer may connect to
control nodes and may transmit a project or job to the node.
The project may include a data set. The data set may be of
any size. Once the control node receives such a project
including a large data set, the control node may distribute the
data set or projects related to the data set to be performed by
worker nodes. Alternatively, for a project including a large
data set, the data set may be received or stored by a machine
other than a control node (e.g., a HADOOP® standard-
compliant data node employing the HADOOP® Dustributed
File System, or HDFS).

Control nodes may maintain knowledge of the status of
the nodes 1n the grid (1.e., grid status information), accept
work requests from clients, subdivide the work across
worker nodes, and coordinate the worker nodes, among
other responsibilities. Worker nodes may accept work
requests from a control node and provide the control node
with results of the work performed by the worker node. A
orid may be started from a single node (e.g., a machine,
computer, server, etc.). This first node may be assigned or
may start as the primary control node that will control any
additional nodes that enter the grid.

When a project 1s submitted for execution (e.g., by a client
or a controller of the grid) it may be assigned to a set of
nodes. After the nodes are assigned to a project, a data
structure (1.e., a communicator) may be created. The com-
municator may be used by the project for information to be
shared between the project codes running on each node. A
communication handle may be created on each node. A
handle, for example, 1s a reference to the communicator that
1s valid within a single process on a single node, and the
handle may be used when requesting communications
between nodes.

A control node, such as control node 402, may be desig-
nated as the primary control node. A server, computer or
other external device may connect to the primary control
node. Once the control node receives a project, the primary
control node may distribute portions of the project to 1its
worker nodes for execution. For example, when a project 1s
initiated on communications grid 400, primary control node
402 controls the work to be performed for the project 1n
order to complete the project as requested or instructed. The
primary control node may distribute work to the worker
nodes based on various factors, such as which subsets or
portions of projects may be completed most efliciently and
in the correct amount of time. For example, a worker node
may perform analysis on a portion of data that 1s already
local (e.g., stored on) the worker node. The primary control
node also coordinates and processes the results of the work
performed by each worker node after each worker node
executes and completes 1ts job. For example, the primary
control node may receive a result from one or more worker
nodes, and the control node may organize (e.g., collect and
assemble) the results recerved and compile them to produce
a complete result for the project received from the end user.

Any remaining control nodes, such as control nodes 404
and 406, may be assigned as backup control nodes for the
project. In an embodiment, backup control nodes may not
control any portion of the project. Instead, backup control
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nodes may serve as a backup for the primary control node
and take over as primary control node 1f the primary control
node were to fail. If a communications grid were to include
only a single control node, and the control node were to fail
(c.g., the control node 1s shut off or breaks) then the
communications grid as a whole may fail and any project or
j0b being run on the communications grid may fail and may
not complete. While the project may be run again, such a
tallure may cause a delay (severe delay in some cases, such
as overnight delay) in completion of the project. Therefore,
a grid with multiple control nodes, including a backup
control node, may be beneficial.

To add another node or machine to the gnd, the primary
control node may open a pair of listeming sockets, for
example. A socket may be used to accept work requests from
clients, and the second socket may be used to accept
connections from other grid nodes. The primary control
node may be provided with a list of other nodes (e.g., other
machines, computers, servers) that will participate in the
orid, and the role that each node will fill 1n the gnnd. Upon
startup of the primary control node (e.g., the first node on the
or1d), the primary control node may use a network protocol
to start the server process on every other node in the grid.
Command line parameters, for example, may inform each
node of one or more pieces of information, such as: the role
that the node will have in the gnd, the host name of the
primary control node, the port number on which the primary
control node 1s accepting connections from peer nodes,
among others. The information may also be provided 1n a
configuration file, transmitted over a secure shell tunnel,
recovered from a configuration server, among others. While
the other machines 1n the grid may not mnitially know about
the configuration of the grid, that information may also be
sent to each other node by the primary control node. Updates
of the grid mnformation may also be subsequently sent to
those nodes.

For any control node other than the primary control node
added to the grid, the control node may open three sockets.
The first socket may accept work requests from clients, the
second socket may accept connections from other gnid
members, and the third socket may connect (e.g., perma-
nently) to the primary control node. When a control node
(e.g., primary control node) receives a connection from
another control node, it first checks to see if the peer node
1s 1n the list of configured nodes 1n the grid. It 1t 1s not on
the list, the control node may clear the connection. If it 1s on
the list, it may then attempt to authenticate the connection.
I authentication 1s successiul, the authenticating node may
transmit information to 1ts peer, such as the port number on
which a node 1s listening for connections, the host name of
the node, information about how to authenticate the node,
among other information. When a node, such as the new
control node, receives information about another active
node, 1t will check to see 1t 1t already has a connection to that
other node. It 1t does not have a connection to that node, it
may then establish a connection to that control node.

Any worker node added to the grid may establish a
connection to the primary control node and any other control
nodes on the grid. After establishing the connection, 1t may
authenticate 1tself to the gnd (e.g., any control nodes,
including both primary and backup, or a server or user
controlling the grid). After successiul authentication, the
worker node may accept configuration information from the
control node.

When a node joins a communications grid (e.g., when the
node 1s powered on or connected to an existing node on the
orid or both), the node 1s assigned (e.g., by an operating
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system of the grid) a universally unique 1dentifier (UUID).
This unique identifier may help other nodes and external
entities (devices, users, etc.) to 1dentily the node and dis-
tinguish 1t from other nodes. When a node 1s connected to
the grid, the node may share 1ts unique identifier with the
other nodes 1n the grid. Since each node may share its unique
identifier, each node may know the unique identifier of every
other node on the grid. Unique identifiers may also designate
a hierarchy of each of the nodes (e.g., backup control nodes)
within the grid. For example, the umique identifiers of each
of the backup control nodes may be stored 1n a list of backup
control nodes to indicate an order in which the backup
control nodes will take over for a failed primary control node
to become a new primary control node. However, a hierar-
chy of nodes may also be determined using methods other
than using the unique 1dentifiers of the nodes. For example,
the hierarchy may be predetermined, or may be assigned
based on other predetermined factors.

The grid may add new machines at any time (e.g.,
initiated from any control node). Upon adding a new node
to the grid, the control node may first add the new node to
its table of grid nodes. The control node may also then notity
every other control node about the new node. The nodes
receiving the notification may acknowledge that they have
updated their configuration information.

Primary control node 402 may, for example, transmit one
or more communications to backup control nodes 404 and
406 (and, for example, to other control or worker nodes
within the commumnications grid). Such communications
may be sent periodically, at fixed time intervals, between
known fixed stages of the project’s execution, among other
protocols. The communications transmitted by primary con-
trol node 402 may be of varnied types and may include a
variety of types ol information. For example, primary con-
trol node 402 may transmit snapshots (e.g., status informa-
tion) of the communications grid so that backup control
node 404 always has a recent snapshot of the communica-
tions grid. The snapshot or grid status may include, for
example, the structure of the grid (including, for example,
the worker nodes 1n the grid, unique identifiers of the nodes,
or their relationships with the primary control node) and the
status of a project (including, for example, the status of each
worker node’s portion of the project). The snapshot may also
include analysis or results received from worker nodes 1n the
communications grid. The backup control nodes may
receive and store the backup data received from the primary
control node. The backup control nodes may transmit a
request for such a snapshot (or other information) from the
primary control node, or the primary control node may send
such information periodically to the backup control nodes.

As noted, the backup data may allow the backup control
node to take over as primary control node if the primary
control node fails without requiring the grid to start the
project over from scratch. I the primary control node fails,
the backup control node that will take over as primary
control node may retrieve the most recent version of the
snapshot received from the primary control node and use the
snapshot to continue the project from the stage of the project
indicated by the backup data. This may prevent failure of the
project as a whole.

A backup control node may use various methods to
determine that the primary control node has failed. In one
example of such a method, the primary control node may
transmit (e.g., periodically) a communication to the backup
control node that indicates that the primary control node 1s
working and has not failed, such as a heartbeat communi-
cation. The backup control node may determine that the
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primary control node has failed if the backup control node
has not received a heartbeat communication for a certain
predetermined period of time. Alternatively, a backup con-
trol node may also receive a communication from the
primary control node itself (before 1t failed) or from a
worker node that the primary control node has failed, for
example because the primary control node has failed to
communicate with the worker node.

Different methods may be performed to determine which
backup control node of a set of backup control nodes (e.g.,
backup control nodes 404 and 406) will take over for failed
primary control node 402 and become the new primary
control node. For example, the new primary control node
may be chosen based on a ranking or “hierarchy” of backup
control nodes based on their unique 1dentifiers. In an alter-
native embodiment, a backup control node may be assigned
to be the new primary control node by another device 1n the
communications grid or from an external device (e.g., a
system 1nfrastructure or an end user, such as a server or
computer, controlling the communications grid). In another
alternative embodiment, the backup control node that takes
over as the new primary control node may be designated
based on bandwidth or other statistics about the communi-
cations grid.

A worker node within the communications grid may also
tail. It a worker node fails, work being performed by the
talled worker node may be redistributed amongst the opera-
tional worker nodes. In an alternative embodiment, the
primary control node may transmit a communication to each
of the operable worker nodes still on the communications
orid that each of the worker nodes should purposefully fail
also. After each of the worker nodes fail, they may each
retrieve their most recent saved checkpoint of their status
and re-start the project from that checkpoint to minimize lost
progress on the project being executed.

FI1G. 5 illustrates a flow chart showing an example process
500 for adjusting a communications grid or a work project
in a communications grid after a failure of a node, according
to embodiments of the present technology. The process may
include, for example, receiving grid status information
including a project status of a portion of a project being
executed by a node 1n the communications grid, as described
in operation 302. For example, a control node (e.g., a backup
control node connected to a primary control node and a
worker node on a communications grid) may receive grid
status 1nformation, where the grid status information
includes a project status of the primary control node or a
project status of the worker node. The project status of the
primary control node and the project status of the worker
node may include a status of one or more portions of a
project being executed by the primary and worker nodes in
the communications grid. The process may also include
storing the grid status information, as described 1n operation
504. For example, a control node (e.g., a backup control
node) may store the received grid status information locally
within the control node. Alternatively, the grid status infor-
mation may be sent to another device for storage where the
control node may have access to the information.

The process may also include receiving a failure commu-
nication corresponding to a node 1n the communications grid
in operation 306. For example, a node may receive a failure
communication including an indication that the primary
control node has failed, prompting a backup control node to
take over for the primary control node. In an alternative
embodiment, a node may recerve a failure that a worker
node has failed, prompting a control node to reassign the
work being performed by the worker node. The process may
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also include reassigning a node or a portion of the project
being executed by the failed node, as described 1n operation
508. For example, a control node may designate the backup
control node as a new primary control node based on the
fallure communication upon receiving the failure commu-
nication. It the failed node 1s a worker node, a control node
may 1dentify a project status of the failed worker node using
the snapshot of the communications grid, where the project
status of the failed worker node includes a status of a portion
of the project being executed by the failed worker node at
the failure time.

The process may also include receiving updated gnid
status mnformation based on the reassignment, as described
in operation 510, and transmaitting a set of instructions based
on the updated grid status information to one or more nodes
in the communications grid, as described 1n operation 512.
The updated grid status information may include an updated
project status of the primary control node or an updated
project status of the worker node. The updated information
may be transmitted to the other nodes 1n the grid to update
their stale stored information.

FIG. 6 1llustrates a portion of a communications grid
computing system 600 including a control node and a
worker node, according to embodiments of the present
technology. Communications grid 600 computing system
includes one control node (control node 602) and one
worker node (worker node 610) for purposes of illustration,
but may include more worker and/or control nodes. The
control node 602 1s communicatively connected to worker
node 610 via communication path 6350. Therefore, control
node 602 may transmit information (e.g., related to the
communications grid or notifications), to and recerve infor-
mation from worker node 610 via path 6350.

Similar to 1 FIG. 4, communications grid computing
system (or just “communications grid”) 600 includes data
processing nodes (control node 602 and worker node 610).
Nodes 602 and 610 include multi-core data processors. Each
node 602 and 610 includes a grid-enabled software compo-
nent (GESC) 620 that executes on the data processor asso-
ciated with that node and interfaces with bufler memory 622
also associated with that node. Each node 602 and 610
includes database management software (DBMS) 628 that
executes on a database server (not shown) at control node
602 and on a database server (not shown) at worker node
610.

Each node also includes a data store 624. Data stores 624,
similar to network-attached data stores 110 1 FIG. 1 and
data stores 235 in FIG. 2, are used to store data to be
processed by the nodes 1n the computing environment. Data
stores 624 may also store any intermediate or final data
generated by the computing system after being processed,
for example in non-volatile memory. However in certain
embodiments, the configuration of the grid computing envi-
ronment allows 1ts operations to be performed such that
intermediate and final data results can be stored solely 1n
volatile memory (e.g., RAM), without a requirement that
intermediate or final data results be stored to non-volatile
types of memory. Storing such data in volatile memory may
be useful 1n certain situations, such as when the grid receives
queries (e.g., ad hoc) from a client and when responses,
which are generated by processing large amounts of data,
need to be generated quickly or on-the-fly. In such a situa-
tion, the grid may be configured to retain the data within
memory so that responses can be generated at diflerent
levels of detail and so that a client may interactively query
against this information.
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Each node also includes a user-defined function (UDF)
626. The UDF provides a mechanism for the DBMS 628 to
transfer data to or receive data from the database stored in
the data stores 624 that are managed by the DBMS. For
example, UDF 626 can be invoked by the DBMS to provide
data to the GESC for processing. The UDF 626 may
establish a socket connection (not shown) with the GESC to
transier the data. Alternatively, the UDF 626 can transier
data to the GESC by writing data to shared memory acces-
sible by both the UDF and the GESC.

The GESC 620 at the nodes 602 and 620 may be con-
nected via a network, such as network 108 shown 1n FIG. 1.
Therefore, nodes 602 and 620 can communicate with each
other via the network using a predetermined communication
protocol such as, for example, the Message Passing Interface
(MPI). Each GESC 620 can engage 1n point-to-point com-
munication with the GESC at another node or in collective
communication with multiple GESCs via the network. The
GESC 620 at each node may contain i1dentical (or nearly
identical) software instructions. Each node may be capable
of operating as either a control node or a worker node. The
GESC at the control node 602 can communicate, over a
communication path 6352, with a client deice 630. More
specifically, control node 602 may communicate with client
application 632 hosted by the client device 630 to receive
queries and to respond to those queries after processing large
amounts of data.

DBMS 628 may control the creation, maintenance, and
use of database or data structure (not shown) within a nodes
602 or 610. The database may organize data stored 1n data
stores 624. The DBMS 628 at control node 602 may accept
requests for data and transfer the appropniate data for the
request. With such a process, collections of data may be
distributed across multiple physical locations. In this
example, each node 602 and 610 stores a portion of the total
data managed by the management system 1n its associated
data store 624.

Furthermore, the DBMS may be responsible for protect-
ing against data loss using replication techniques. Replica-
tion includes providing a backup copy of data stored on one
node on one or more other nodes. Therefore, 11 one node
fails, the data from the failed node can be recovered from a
replicated copy residing at another node. However, as
described herein with respect to FIG. 4, data or status
information for each node 1n the communications grid may
also be shared with each node on the grid.

FI1G. 7 illustrates a flow chart showing an example method
700 for executing a project within a grid computing system,
according to embodiments of the present technology. As
described with respect to FIG. 6, the GESC at the control
node may transmit data with a client device (e.g., client
device 630) to recerve queries for executing a project and to
respond to those queries after large amounts of data have
been processed. The query may be transmitted to the control
node, where the query may include a request for executing,
a project, as described i1n operation 702. The query can
contain instructions on the type of data analysis to be
performed 1n the project and whether the project should be
executed using the grid-based computing environment, as
shown 1n operation 704.

To 1mitiate the project, the control node may determine 11
the query requests use of the grid-based computing envi-
ronment to execute the project. If the determination 1s no,
then the control node 1nitiates execution of the project 1n a
solo environment (e.g., at the control node), as described 1n
operation 710. If the determination 1s yes, the control node
may 1nitiate execution ol the project in the grid-based
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computing environment, as described 1n operation 706. In
such a situation, the request may include a requested con-
figuration of the grid. For example, the request may include
a number of control nodes and a number of worker nodes to
be used 1n the grid when executing the project. After the
project has been completed, the control node may transmit
results of the analysis yielded by the gnid, as described in
operation 708. Whether the project 1s executed 1n a solo or
orid-based environment, the control node provides the
results of the project, as described 1n operation 712.

As noted with respect to FIG. 2, the computing environ-
ments described herein may collect data (e.g., as recerved
from network devices, such as sensors, such as network
devices 204-209 in FIG. 2, and client devices or other
sources) to be processed as part of a data analytics project,
and data may be received 1n real time as part of a streaming
analytics environment (e.g., ESP). Data may be collected
using a variety of sources as commumcated via diflerent
kinds of networks or locally, such as on a real-time stream-
ing basis. For example, network devices may receive data
periodically from network device sensors as the sensors
continuously sense, monitor and track changes 1n their
environments. More specifically, an increasing number of
distributed applications develop or produce continuously
flowing data from distributed sources by applying queries to
the data before distributing the data to geographically dis-
tributed recipients. An event stream processing engine
(ESPE) may continuously apply the queries to the data as it
1s recerved and determines which entities should receive the
data. Client or other devices may also subscribe to the ESPE
or other devices processing ESP data so that they can receive
data after processing, based on for example the entities
determined by the processing engine. For example, client
devices 230 in FIG. 2 may subscribe to the ESPE 1n
computing environment 214. In another example, event
subscription devices 1024a-c, described further with respect
to FIG. 10, may also subscribe to the ESPE. The ESPE may
determine or define how input data or event streams from
network devices or other publishers (e.g., network devices
204-209 1n FIG. 2) are transformed into meaningful output
data to be consumed by subscribers, such as for example
client devices 230 in FIG. 2.

FIG. 8 1llustrates a block diagram including components
of an Event Stream Processing Engine (ESPE), according to
embodiments of the present technology. ESPE 800 may
include one or more projects 802. A project may be
described as a second-level container 1in an engine model
managed by ESPE 800 where a thread pool size for the
project may be defined by a user. Each project of the one or
more projects 802 may include one or more continuous
queries 804 that contain data flows, which are data trans-
formations of incoming event streams. The one or more
continuous queries 804 may include one or more source
windows 806 and one or more derived windows 808.

The ESPE may receive streaming data over a period of
time related to certain events, such as events or other data
sensed by one or more network devices. The ESPE may
perform operations associated with processing data created
by the one or more devices. For example, the ESPE may
receive data from the one or more network devices 204-209
shown 1n FIG. 2. As noted, the network devices may include
sensors that sense diflerent aspects of their environments,
and may collect data over time based on those sensed
observations. For example, the ESPE may be implemented
within one or more of machines 220 and 240 shown 1n FIG.
2. The ESPE may be implemented within such a machine by
an ESP application. An ESP application may embed an
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ESPE with 1ts own dedicated thread pool or pools 1nto 1ts
application space where the main application thread can do
application-specific work and the ESPE processes event
streams at least by creating an instance of a model into
processing objects.

The engine container is the top-level container 1n a model
that manages the resources of the one or more projects 802.
In an illustrative embodiment, for example, there may be
only one ESPE 800 for each istance of the ESP application,
and ESPE 800 may have a unique engine name. Addition-
ally, the one or more projects 802 may each have unique
project names, and each query may have a unique continu-
ous query name and begin with a uniquely named source
window of the one or more source windows 806. ESPE 800
may or may not be persistent.

Continuous query modeling involves defining directed
graphs of windows for event stream manipulation and
transformation. A window 1n the context of event stream
manipulation and transformation 1s a processing node 1n an
event stream processing model. A window 1n a continuous
query can perform aggregations, computations, pattern-
matching, and other operations on data tflowing through the
window. A continuous query may be described as a directed
graph of source, relational, pattern matching, and procedural
windows. The one or more source windows 806 and the one
or more derived windows 808 represent continuously
executing queries that generate updates to a query result set
as new event blocks stream through ESPE 800. A directed
graph, for example, 1s a set of nodes connected by edges,
where the edges have a direction associated with them.

An event object may be described as a packet of data
accessible as a collection of fields, with at least one of the
ficlds defined as a key or unique identifier (ID). The event
object may be created using a variety of formats including
binary, alphanumeric, XML, etc. Each event object may
include one or more fields designated as a primary 1dentifier
(ID) for the event so ESPE 800 can support operation codes
(opcodes) for events including insert, update, upsert, and
delete. Upsert opcodes update the event 1f the key field
already exists; otherwise, the event 1s 1nserted. For 1llustra-
tion, an event object may be a packed binary representation
of a set of field values and include both metadata and field
data associated with an event. The metadata may include an
opcode 1ndicating 1 the event represents an insert, update,
delete, or upsert, a set of tlags indicating 11 the event 1s a
normal, partial-update, or a retention generated event from
retention policy management, and a set of microsecond
timestamps that can be used for latency measurements.

An event block object may be described as a grouping or
package of event objects. An event stream may be described
as a flow of event block objects. A continuous query of the
one or more continuous queries 804 transforms a source
event stream made up of streaming event block objects
published into ESPE 800 into one or more output event
streams using the one or more source windows 806 and the
one or more derived windows 808. A continuous query can
also be thought of as data flow modeling.

The one or more source windows 806 are at the top of the
directed graph and have no windows feeding into them.
Event streams are published into the one or more source
windows 806, and from there, the event streams may be
directed to the next set of connected windows as defined by
the directed graph. The one or more derived windows 808
are all instantiated windows that are not source windows and
that have other windows streaming events into them. The
one or more dertved windows 808 may perform computa-
tions or transformations on the incoming event streams. The
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one or more derived windows 808 transform event streams
based on the window type (that 1s operators such as join,
filter, compute, aggregate, copy, pattern match, procedural,
union, etc.) and window settings. As event streams are
published into ESPE 800, they are continuously queried, and
the resulting sets of derived windows in these queries are
continuously updated.

FIG. 9 1llustrates a flow chart showing an example process
including operations performed by an event stream process-
ing engine, according to some embodiments of the present
technology. As noted, the ESPE 800 (or an associated ESP
application) defines how 1nput event streams are trans-
formed 1nto meanmingiul output event streams. More specifi-
cally, the ESP application may define how input event
streams from publishers (e.g., network devices providing
sensed data) are transformed 1nto meaningful output event
streams consumed by subscribers (e.g., a data analytics
project being executed by a machine or set of machines).

Within the application, a user may interact with one or
more user interface windows presented to the user 1 a
display under control of the ESPE independently or through
a browser application 1n an order selectable by the user. For
example, a user may execute an ESP application, which
causes presentation of a first user interface window, which
may include a plurality of menus and selectors such as drop
down menus, buttons, text boxes, hyperlinks, etc. associated
with the ESP application as understood by a person of skill
in the art. As further understood by a person of skill in the
art, various operations may be performed in parallel, for
example, using a plurality of threads.

At operation 900, an ESP application may define and start
an ESPE, thereby instantiating an ESPE at a device, such as
machine 220 and/or 240. In an operation 902, the engine
container 1s created. For illustration, ESPE 800 may be
instantiated using a function call that specifies the engine
container as a manager for the model.

In an operation 904, the one or more continuous queries
804 are instantiated by ESPE 800 as a model. The one or
more continuous queries 804 may be instantiated with a
dedicated thread pool or pools that generate updates as new
events stream through ESPE 800. For illustration, the one or
more continuous queries 804 may be created to model
business processing logic within ESPE 800, to predict
events within ESPE 800, to model a physical system within
ESPE 800, to predict the physical system state within ESPE
800, etc. For example, as noted, ESPE 800 may be used to
support sensor data monitoring and management (e.g., sens-
ing may include force, torque, load, strain, position, tem-
perature, air pressure, fluid tlow, chemical properties, resis-
tance, electromagnetic fields, radiation, 1rradiance,
proximity, acoustics, moisture, distance, speed, vibrations,
acceleration, electrical potential, or electrical current, etc.).

ESPE 800 may analyze and process events 1in motion or
“event streams.” Instead of storing data and running queries
against the stored data, ESPE 800 may store queries and
stream data through them to allow continuous analysis of
data as 1t 1s received. The one or more source windows 806
and the one or more dennved windows 808 may be created
based on the relational, pattern matching, and procedural
algorithms that transform the input event streams into the
output event streams to model, simulate, score, test, predict,
etc. based on the continuous query model defined and
application to the streamed data.

In an operation 906, a publish/subscribe (pub/sub) capa-
bility 1s 1nitialized for ESPE 800. In an illustrative embodi-
ment, a pub/sub capability 1s mitialized for each project of
the one or more projects 802. To mmtialize and enable
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pub/sub capability for ESPE 800, a port number may be
provided. Pub/sub clients can use a host name of an ESP
device runming the ESPE and the port number to establish
pub/sub connections to ESPE 800.

FIG. 10 1llustrates an ESP system 1000 interfacing
between publishing device 1022 and event subscribing
devices 1024a-c, according to embodiments of the present
technology. ESP system 1000 may include ESP device or
subsystem 851, event publishing device 1022, an event
subscribing device A 1024a, an event subscribing device B
10245, and an event subscribing device C 1024¢. Input event
streams are output to ESP device 851 by publishing device
1022. In alternative embodiments, the mput event streams
may be created by a plurality of publishing devices. The
plurality of publishing devices further may publish event
streams to other ESP devices. The one or more continuous
queries nstantiated by ESPE 800 may analyze and process
the mput event streams to form output event streams output
to event subscribing device A 1024a, event subscribing
device B 10245, and event subscribing device C 1024¢. ESP
system 1000 may include a greater or a fewer number of
event subscribing devices of event subscribing devices.

Publish-subscribe 1s a message-oriented interaction para-
digm based on 1indirect addressing. Processed data recipients
specily their interest 1n receiving information from ESPE
800 by subscribing to specific classes of events, while
information sources publish events to ESPE 800 without
directly addressing the receiving parties. ESPE 800 coordi-
nates the interactions and processes the data. In some cases,
the data source receives confirmation that the published
information has been received by a data recipient.

A publish/subscribe API may be described as a library that
enables an event publisher, such as publishing device 1022,
to publish event streams into ESPE 800 or an event sub-
scriber, such as event subscribing device A 1024a, event
subscribing device B 10245, and event subscribing device C
1024c¢, to subscribe to event streams from ESPE 800. For
illustration, one or more publish/subscribe APIs may be
defined. Using the publish/subscribe API, an event publish-
ing application may publish event streams into a running
event stream processor project source window of ESPE 800,
and the event subscription application may subscribe to an
event stream processor project source window of ESPE 800.

The publish/subscribe API provides cross-platform con-
nectivity and endianness compatibility between ESP appli-
cation and other networked applications, such as event
publishing applications instantiated at publishing device
1022, and event subscription applications 1nstantiated at one
or more of event subscribing device A 1024a, event sub-
scribing device B 10245, and event subscribing device C
1024c.

Referring back to FIG. 9, operation 906 initializes the
publish/subscribe capability of ESPE 800. In an operation
908, the one or more projects 802 are started. The one or
more started projects may run 1n the background on an ESP
device. In an operation 910, an event block object 1s received
from one or more computing device of the event publishing
device 1022.

ESP subsystem 800 may include a publishing client 1002,
ESPE 800, a subscribing client A 1004, a subscribing client
B 1006, and a subscribing client C 1008. Publishing client
1002 may be started by an event publishing application
executing at publishing device 1022 using the publish/
subscribe API. Subscribing client A 1004 may be started by
an event subscription application A, executing at event
subscribing device A 1024a using the publish/subscribe API.
Subscribing client B 1006 may be started by an event
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subscription application B executing at event subscribing
device B 10245 using the publish/subscribe API. Subscrib-
ing client C 1008 may be started by an event subscription
application C executing at event subscribing device C 1024c¢
using the publish/subscribe API.

An event block object containing one or more event
objects 1s 1njected 1nto a source window of the one or more
source windows 806 from an 1nstance of an event publishing
application on event publishing device 1022. The event
block object may be generated, for example, by the event
publishing application and may be received by publishing
client 1002. A unique ID may be maintained as the event
block object 1s passed between the one or more source
windows 806 and/or the one or more derived windows 808
of ESPE 800, and to subscribing client A 1004, subscribing
client B 1006, and subscribing client C 1008 and to event
subscription device A 1024a, event subscription device B
10245, and event subscription device C 1024¢. Publishing
client 1002 may further generate and include a unique
embedded transaction ID in the event block object as the
event block object 1s processed by a continuous query, as
well as the unique ID that publishing device 1022 assigned
to the event block object.

In an operation 912, the event block object 1s processed
through the one or more continuous queries 804. In an
operation 914, the processed event block object 1s output to
one or more computing devices of the event subscribing
devices 1024a-c. For example, subscribing client A 1004,
subscribing client B 1006, and subscribing client C 1008
may send the received event block object to event subscrip-
tion device A 1024qa, event subscription device B 10245, and
event subscription device C 1024c¢, respectively.

ESPE 800 maintains the event block containership aspect
ol the received event blocks from when the event block is
published 1nto a source window and works its way through
the directed graph defined by the one or more continuous
queries 804 with the various event translations before being
output to subscribers. Subscribers can correlate a group of
subscribed events back to a group of published events by
comparing the unique ID of the event block object that a
publisher, such as publishing device 1022, attached to the
event block object with the event block ID received by the
subscriber.

In an operation 916, a determination 1s made concerning,
whether or not processing 1s stopped. If processing 1s not
stopped, processing continues 1n operation 910 to continue
receiving the one or more event streams containing event
block objects from the, for example, one or more network
devices. If processing 1s stopped, processing continues in an
operation 918. In operation 918, the started projects are
stopped. In operation 920, the ESPE i1s shutdown.

As noted, 1n some embodiments, big data 1s processed for
an analytics project after the data i1s received and stored. In
other embodiments, distributed applications process con-
tinuously flowing data 1n real-time from distributed sources
by applying queries to the data before distributing the data
to geographically distributed recipients. As noted, an event
stream processing engine (ESPE) may continuously apply
the queries to the data as 1t 1s recerved and determines which
entities receive the processed data. This allows for large
amounts ol data being received and/or collected 1n a vaniety
of environments to be processed and distributed in real time.
For example, as shown with respect to FIG. 2, data may be
collected from network devices that may include devices
within the iternet of things, such as devices within a home
automation network. However, such data may be collected
from a variety of different resources 1n a variety of different
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environments. In any such situation, embodiments of the
present technology allow for real-time processing of such
data.

Aspects of the current disclosure provide technical solu-
tions to technical problems, such as computing problems
that arise when an ESP device fails which results m a
complete service mterruption and potentially significant data
loss. The data loss can be catastrophic when the streamed
data 1s supporting mission critical operations such as those
in support of an ongoing manufacturing or drilling opera-
tion. An embodiment of an ESP system achieves a rapid and
seamless failover of ESPE runming at the plurality of ESP
devices without service interruption or data loss, thus sig-
nificantly improving the reliability of an operational system
that relies on the live or real-time processing of the data
streams. The event publishing systems, the event subscrib-
ing systems, and each ESPE not executing at a failed ESP
device are not aware of or effected by the failed ESP device.
The ESP system may include thousands of event publishing
systems and event subscribing systems. The ESP system
keeps the failover logic and awareness within the boundaries
of out-messaging network connector and out-messaging
network device.

In one example embodiment, a system 1s provided to
support a fallover when event stream processing (ESP) event
blocks. The system includes, but i1s not limited to, an
out-messaging network device and a computing device. The
computing device includes, but 1s not limited to, a processor
and a computer-readable medium operably coupled to the
processor. The processor 1s configured to execute an ESP
engine (ESPE). The computer-readable medium has instruc-
tions stored thereon that, when executed by the processor,
cause the computing device to support the failover. An event
block object 1s recetved from the ESPE that includes a
unique 1dentifier. A first status of the computing device as
active or standby 1s determined. When the first status is
active, a second status of the computing device as newly
active or not newly active 1s determined. Newly active 1s
determined when the computing device 1s switched from a
standby status to an active status. When the second status 1s
newly active, a last published event block object 1dentifier
that uniquely 1dentifies a last published event block object 1s
determined. A next event block object 1s selected from a
non-transitory computer-readable medium accessible by the
computing device. The next event block object has an event
block object identifier that 1s greater than the determined last
published event block object i1dentifier. The selected next
event block object 1s published to an out-messaging network
device. When the second status of the computing device 1s
not newly active, the recerved event block object 1s pub-
lished to the out-messaging network device. When the {first
status of the computing device 1s standby, the recerved event
block object 1s stored 1n the non-transitory computer-read-
able medium.

FIG. 11 1s a flow chart of an example of a process for
generating and using a machine-learning model according to
some aspects. Machine learning 1s a branch of artificial
intelligence that relates to mathematical models that can
learn from, categorize, and make predictions about data.
Such mathematical models, which can be referred to as
machine-learning models, can classily input data among two
or more classes; cluster mput data among two or more
groups; predict a result based on input data; identily patterns
or trends 1n mnput data; identity a distribution of input data
in a space; or any combination of these. Examples of
machine-learning models can include (1) neural networks;
(1) decision trees, such as classification trees and regression
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trees; (111) classifiers, such as Naive bias classifiers, logistic
regression classifiers, ridge regression classifiers, random
forest classifiers, least absolute shrinkage and selector
(LASSO) classifiers, and support vector machines; (1v)
clusterers, such as k-means clusterers, mean-shift clusterers,
and spectral clusterers; (v) factorizers, such as factorization
machines, principal component analyzers and kernel prin-
cipal component analyzers; and (vi) ensembles or other
combinations of machine-learning models. In some
examples, neural networks can include deep neural net-
works, feed-forward neural networks, recurrent neural net-
works, convolutional neural networks, radial basis function
(RBF) neural networks, echo state neural networks, long
short-term memory neural networks, bi-directional recurrent
neural networks, gated neural networks, hierarchical recur-
rent neural networks, stochastic neural networks, modular
neural networks, spiking neural networks, dynamic neural
networks, cascading neural networks, neuro-fuzzy neural
networks, or any combination of these.

Different machine-learning models may be used inter-
changeably to perform a task. Examples of tasks that can be
performed at least partially using machine-learming models
include various types of scoring; bioinformatics; chemin-
formatics; software engineering; fraud detection; customer
segmentation; generating online recommendations; adaptive
websites; determining customer lifetime value; search
engines; placing advertisements in real time or near real
time; classifying DNA sequences; allective computing; per-
forming natural language processing and understanding;
object recognition and computer vision; robotic locomotion;
playing games; optimization and metaheuristics; detecting
network intrusions; medical diagnosis and monitoring; or
predicting when an asset, such as a machine, will need
maintenance.

Any number and combination of tools can be used to
create machine-learning models. Examples of tools for cre-

ating and managing machine-learning models can include
SAS® Enterprise Miner, SAS® Rapid Predictive Modeler,

and SAS® Model Manager, SAS Cloud Analytic Services
(CAS)®, SAS Viya® of all which are by SAS Institute Inc.
of Cary, North Carolina.

Machine-learning models can be constructed through an
at least partially automated (e.g., with little or no human
involvement) process called training. During training, input
data can be 1teratively supplied to a machine-learning model
to enable the machine-learning model to i1dentily patterns
related to the input data or to identify relationships between
the mnput data and output data. With training, the machine-
learning model can be transformed from an untrained state
to a trained state. Input data can be split into one or more
training sets and one or more validation sets, and the traiming,
process may be repeated multiple times. The splitting may
follow a k-fold cross-validation rule, a leave-one-out-rule, a
leave-p-out rule, or a holdout rule. An overview of training
and using a machine-learning model 1s described below with
respect to the flow chart of FIG. 11.

In block 1102, traimning data 1s received. In some
examples, the traiming data 1s received from a remote
database or a local database, constructed from wvarious
subsets ol data, or input by a user. The training data can be
used 1n 1ts raw form for training a machine-learning model
or pre-processed nto another form, which can then be used
for training the machine-learning model. For example, the
raw form of the tramning data can be smoothed, truncated,
aggregated, clustered, or otherwise manipulated into another
form, which can then be used for training the machine-
learning model.
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In block 1104, a machine-learning model 1s trained using
the training data. The machine-learning model can be trained
in a supervised, unsupervised, or semi-supervised manner.
In supervised training, each input in the training data is
correlated to a desired output. This desired output may be a
scalar, a vector, or a different type of data structure such as
text or an 1mage. This may enable the machine-learming
model to learn a mapping between the mputs and desired
outputs. In unsupervised training, the training data includes
inputs, but not desired outputs, so that the machine-learning
model has to find structure in the mmputs on 1ts own. In
semi-supervised training, only some of the inputs in the
training data are correlated to desired outputs.

In block 1106, the machine-learning model 1s evaluated.
For example, an evaluation dataset can be obtained, for
example, via user input or from a database. The evaluation
dataset can include mputs correlated to desired outputs. The
inputs can be provided to the machine-learming model and
the outputs from the machine-learning model can be com-
pared to the desired outputs. If the outputs from the
machine-learning model closely correspond with the desired
outputs, the machine-learning model may have a high
degree of accuracy. For example, i 90% or more of the
outputs from the machine-learning model are the same as the
desired outputs in the evaluation dataset, the machine-
learning model may have a high degree of accuracy. Oth-
erwise, the machine-learning model may have a low degree
of accuracy. The 90% number 1s an example only. A realistic
and desirable accuracy percentage 1s dependent on the
problem and the data.

In some examples, 11, at 1108, the machine-learming
model has an mnadequate degree of accuracy for a particular
task, the process can return to block 1104, where the
machine-learning model can be further trained using addi-
tional training data or otherwise modified to improve accu-
racy. However, if, at 1108. the machine-learning model has
an adequate degree of accuracy for the particular task, the
process can continue to block 1110.

In block 1110, new data 1s received. In some examples,
the new data 1s received from a remote database or a local
database, constructed from various subsets of data, or input
by a user. The new data may be unknown to the machine-
learning model. For example, the machine-learning model
may not have previously processed or analyzed the new
data.

In block 1112, the trained machine-learning model 1s used
to analyze the new data and provide a result. For example,
the new data can be provided as input to the tramned
machine-learning model. The trained machine-learning
model can analyze the new data and provide a result that
includes a classification of the new data mto a particular
class, a clustering of the new data 1nto a particular group, a
prediction based on the new data, or any combination of
these.

In block 1114, the result 1s post-processed. For example,
the result can be added to, multiplied with, or otherwise
combined with other data as part of a job. As another
example, the result can be transformed from a first format,
such as a time series format, into another format, such as a
count series format. Any number and combination of opera-
tions can be performed on the result during post-processing.

A more specific example of a machine-learning model 1s
the neural network 1200 shown in FIG. 12. The neural
network 1200 1s represented as multiple layers of neurons
1208 that can exchange data between one another wvia
connections 1255 that may be selectively instantiated therea-
mong. The layers include an mput layer 1202 for receiving,
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input data provided at mputs 1222, one or more hidden
layers 1204, and an output layer 1206 for providing a result
at outputs 1277. The hidden layer(s) 1204 are referred to as
hidden because they may not be directly observable or have
their inputs or outputs directly accessible during the normal
functioning of the neural network 1200. Although the neural
network 1200 1s shown as having a specific number of layers
and neurons for exemplary purposes, the neural network
1200 can have any number and combination of layers, and
cach layer can have any number and combination of neu-
rons.

The neurons 1208 and connections 12355 thereamong may
have numeric weights, which can be tuned during training of
the neural network 1200. For example, training data can be
provided to at least the mnputs 1222 to the mput layer 1202
of the neural network 1200, and the neural network 1200 can
use the training data to tune one or more numeric weights of
the neural network 1200. In some examples, the neural
network 1200 can be trained using backpropagation. Back-
propagation can include determining a gradient of a particu-
lar numeric weight based on a difference between an actual
output of the neural network 1200 at the outputs 1277 and
a desired output of the neural network 1200. Based on the
gradient, one or more numeric weights of the neural network
1200 can be updated to reduce the difference therebetween,
thereby increasing the accuracy of the neural network 1200.
This process can be repeated multiple times to train the
neural network 1200. For example, this process can be
repeated hundreds or thousands of times to train the neural
network 1200.

In some examples, the neural network 1200 1s a feed-
forward neural network. In a feed-forward neural network,
the connections 1255 are instantiated and/or weighted so
that every neuron 1208 only propagates an output value to
a subsequent layer of the neural network 1200. For example,
data may only move one direction (forward) from one
neuron 1208 to the next neuron 1208 i1n a feed-forward
neural network. Such a “forward” direction may be defined
as proceeding from the mput layer 1202 through the one or
more hidden layers 1204, and toward the output layer 1206.

In other examples, the neural network 1200 may be a
recurrent neural network. A recurrent neural network can
include one or more feedback loops among the connections
1255, thereby allowing data to propagate in both forward
and backward through the neural network 1200. Such a
“backward” direction may be defined as proceeding in the
opposite direction of forward, such as from the output layer
1206 through the one or more hidden layers 1204, and
toward the mput layer 1202. This can allow for information
to persist within the recurrent neural network. For example,
a recurrent neural network can determine an output based at
least partially on information that the recurrent neural net-
work has seen before, giving the recurrent neural network
the ability to use previous input to inform the output.

In some examples, the neural network 1200 operates by
receiving a vector of numbers from one layer; transforming
the vector of numbers into a new vector of numbers using a
matrix of numeric weights, a nonlinearity, or both; and
providing the new vector of numbers to a subsequent layer
(“subsequent” 1n the sense of moving “forward”) of the
neural network 1200. Each subsequent layer of the neural
network 1200 can repeat this process until the neural net-
work 1200 outputs a final result at the outputs 1277 of the
output layer 1206. For example, the neural network 1200
can receive a vector ol numbers at the inputs 1222 of the
input layer 1202. The neural network 1200 can multiply the
vector of numbers by a matrix of numeric weights to
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determine a weighted vector. The matrix of numeric weights
can be tuned during the training of the neural network 1200.
The neural network 1200 can transform the weighted vector
using a nonlinearity, such as a sigmoid tangent or the
hyperbolic tangent. In some examples, the nonlinearity can
include a rectified linear unit, which can be expressed using
the equation y=max (x, 0) where vy 1s the output and x 1s an
input value from the weighted vector. The transformed
output can be supplied to a subsequent layer (e.g., a hidden
layer 1204) of the neural network 1200. The subsequent
layer of the neural network 1200 can receive the transformed
output, multiply the transformed output by a matrix of
numeric weights and a nonlinearity, and provide the result to
yet another layer of the neural network 1200 (e.g., another,
subsequent, hidden layer 1204). This process continues until

the neural network 1200 outputs a final result at the outputs

12777 of the output layer 1206.

As also depicted in FIG. 12, the neural network 1200 may
be implemented either through the execution of the instruc-
tions of one or more routines 1244 by central processing
units (CPUs), or through the use of one or more neuromor-
phic devices 1250 that incorporate a set of memristors (or
other similar components) that each function to implement
one of the neurons 1208 in hardware. Where multiple
neuromorphic devices 1250 are used, they may be intercon-
nected in a depth-wise manner to enable 1mplementing
neural networks with greater quantities of layers, and/or in
a width-wise manner to enable implementing neural net-
works having greater quantities of neurons 1208 per layer.

The neuromorphic device 1250 may incorporate a storage
interface 1299 by which neural network configuration data
1293 that 1s descriptive of various parameters and hyper
parameters of the neural network 1200 may be stored and/or
retrieved. More specifically, the neural network configura-
tion data 1293 may include such parameters as weighting,
and/or biasing values derived through the training of the
neural network 1200, as has been described. Alternatively or
additionally, the neural network configuration data 1293
may include such hyperparameters as the manner 1n which
the neurons 1208 are to be interconnected (e.g., feed-
torward or recurrent), the trigger function to be implemented
within the neurons 1208, the quantity of layers and/or the
overall quantity of the neurons 1208. The neural network
configuration data 1293 may provide such information for
more than one neuromorphic device 1250 where multiple
ones have been interconnected to support larger neural
networks.

Other examples of the present disclosure may include any
number and combination of machine-learning models hav-
ing any number and combination of characteristics. The
machine-learning model(s) can be trained 1n a supervised,
semi-supervised, or unsupervised manner, or any combina-
tion of these. The machine-learning model(s) can be 1mple-
mented using a single computing device or multiple com-
puting devices, such as the communications grid computing
system 400 discussed above.

Implementing some examples of the present disclosure at
least 1n part by using machine-learning models can reduce
the total number of processing iterations, time, memory,
clectrical power, or any combination of these consumed by
a computing device when analyzing data. For example, a
neural network may more readily identily patterns 1in data
than other approaches. This may enable the neural network
and/or a transformer model to analyze the data using fewer
processing cycles and less memory than other approaches,
while obtaining a similar or greater level of accuracy.
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Some machine-learning approaches may be more efli-
ciently and speedily executed and processed with machine-
learning specific processors (e.g., not a generic CPU). Such
processors may also provide an energy savings when com-
pared to generic CPUs. For example, some of these proces-
sors can include a graphical processing unit (GPU), an
application-specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), an artificial intelligence (Al)
accelerator, a neural computing core, a neural computing
engine, a neural processing unit, a purpose-built chip archi-
tecture for deep learning, and/or some other machine-learn-
ing specific processor that implements a machine learning
approach or one or more neural networks using semicon-
ductor (e.g., silicon (51), gallium arsenide (GaAs)) devices.
These processors may also be employed 1n heterogeneous
computing architectures with a number of and/or a variety of
different types of cores, engines, nodes, and/or layers to
achieve wvarious energy efliciencies, processing speed
improvements, data communication speed improvements,
and/or data efliciency targets and improvements throughout
various parts of the system when compared to a homoge-
neous computing architecture that employs CPUs for gen-
eral purpose computing.

FIG. 13 1llustrates various aspects of the use of containers
1336 as a mechanism to allocate processing, storage and/or
other resources of a processing system 1300 to the perfor-
mance ol various analyses. More specifically, 1n a process-
ing system 1300 that includes one or more node devices
1330 (e.g., the atoredescribed grid system 400), the process-
ing, storage and/or other resources of each node device 1330
may be allocated through the instantiation and/or mainte-
nance ol multiple containers 1336 within the node devices
1330 to support the performance(s) of one or more analyses.
As each contamner 1336 i1s instantiated, predetermined
amounts ol processing, storage and/or other resources may
be allocated thereto as part of creating an execution envi-
ronment therein 1n which one or more executable routines
1334 may be executed to cause the performance of part or
all of each analysis that 1s requested to be performed.

It may be that at least a subset of the containers 1336 are
cach allocated a similar combination and amounts of
resources so that each 1s of a similar configuration with a
similar range of capabilities, and therefore, are interchange-
able. This may be done 1n embodiments 1n which 1t 1s desired
to have at least such a subset of the containers 1336 already
instantiated prior to the receipt of requests to perform
analyses, and thus, prior to the specific resource require-
ments of each of those analyses being known.

Alternatively or additionally, it may be that at least a
subset of the containers 1336 are not 1nstantiated until after
the processing system 1300 receives requests to perform
analyses where each request may include indications of the
resources required for one of those analyses. Such informa-
tion concerning resource requirements may then be used to
guide the selection of resources and/or the amount of each
resource allocated to each such container 1336. As a result,
it may be that one or more of the containers 1336 are caused
to have somewhat specialized configurations such that there
may be differing types of containers to support the perfor-
mance ol different analyses and/or different portions of
analyses.

It may be that the entirety of the logic of a requested
analysis 1s implemented within a single executable routine
1334. In such embodiments, 1t may be that the enfirety of
that analysis 1s performed within a single container 1336 as
that single executable routine 1334 i1s executed therein.
However, 1t may be that such a single executable routine
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1334, when executed, 1s at least intended to cause the
instantiation of multiple instances of itself that are intended
to be executed at least partially in parallel. This may result
in the execution of multiple instances of such an executable
routine 1334 within a single container 1336 and/or across
multiple containers 1336.

Alternatively or additionally, 1t may be that the logic of a
requested analysis 1s implemented with multiple differing
executable routines 1334. In such embodiments, 1t may be
that at least a subset of such differing executable routines
1334 are executed within a single container 1336. However,
it may be that the execution of at least a subset of such
differing executable routines 1334 1s distributed across mul-
tiple containers 1336.

Where an executable routine 1334 of an analysis 1s under
development, and/or 1s under scrutiny to confirm 1ts func-
tionality, 1t may be that the container 1336 within which that
executable routine 1334 1s to be executed 1s additionally
configured assist in limiting and/or monitoring aspects of the
functionality of that executable routine 1334. More specifi-
cally, the execution environment provided by such a con-
tainer 1336 may be configured to enforce limitations on
accesses that are allowed to be made to memory and/or I/O
addresses to control what storage locations and/or I/O
devices may be accessible to that executable routine 1334.
Such limitations may be derived based on comments within
the programming code of the executable routine 1334 and/or
other information that describes what functionality the
executable routine 1334 1s expected to have, including what
memory and/or I/O accesses are expected to be made when
the executable routine 1334 1s executed. Then, when the
executable routine 1334 1s executed within such a container
1336, the accesses that are attempted to be made by the
executable routine 1334 may be momtored to identily any
behavior that deviates from what 1s expected.

Where the possibility exists that different executable
routines 1334 may be written in different programming,
languages, 1t may be that different subsets of containers 1336
are configured to support different programming languages.
In such embodiments, 1t may be that each executable routine
1334 1s analyzed to i1dentity what programming language it
1s written 1n, and then what container 1336 1s assigned to
support the execution of that executable routine 1334 may
be at least partially based on the identified programming
language. Where the possibility exists that a single requested
analysis may be based on the execution of multiple execut-
able routines 1334 that may each be written 1n a different
programming language, it may be that at least a subset of the
containers 1336 are configured to support the performance
of various data structure and/or data format conversion
operations to enable a data object output by one executable
routine 1334 written 1n one programming language to be
accepted as an mput to another executable routine 1334
written in another programming language.

As depicted, at least a subset of the containers 1336 may
be 1nstantiated within one or more VMs 1331 that may be
instantiated within one or more node devices 1330. Thus, 1n
some embodiments, 1t may be that the processing, storage
and/or other resources of at least one node device 1330 may
be partially allocated through the instantiation of one or
more VMs 1331, and then in turn, may be further allocated
within at least one VM 1331 through the instantiation of one
or more containers 1336.

In some embodiments, it may be that such a nested
allocation of resources may be carried out to eflect an
allocation of resources based on two differing criteria. By
way ol example, 1t may be that the instantiation of VMs
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1331 1s used to allocate the resources of a node device 1330
to multiple users or groups of users 1n accordance with any
of a variety of service agreements by which amounts of
processing, storage and/or other resources are paid for each
such user or group of users. Then, within each VM 1331 or
set of VM 1331 that 1s allocated to a particular user or group
of users, containers 1336 may be allocated to distribute the
resources allocated to each VM 1331 among various analy-
ses that are requested to be performed by that particular user
or group of users.

As depicted, where the processing system 1300 includes
more than one node device 1330, the processing system
1300 may also include at least one control device 1350
within which one or more control routines 1354 may be
executed to control various aspects of the use of the node
device(s) 1330 to perform requested analyses. By way of
example, 1t may be that at least one control routine 1354
implements logic to control the allocation of the processing,
storage and/or other resources of each node device 1300 to
cach VM 1331 and/or container 1336 that 1s instantiated
theremn. Thus, it may be the control device(s) 1350 that
eflects a nested allocation of resources, such as the afore-
described example allocation of resources based on two
differing criteria.

As also depicted, the processing system 1300 may also
include one or more distinct requesting devices 1370 from
which requests to perform analyses may be received by the
control device(s) 1350. Thus, and by way of example, it may
be that at least one control routine 1354 implements logic to
monitor for the receipt of requests from authorized users
and/or groups of users for various analyses to be performed
using the processing, storage and/or other resources of the
node device(s) 1330 of the processing system 1300. The
control device(s) 1350 may receive indications of the avail-
ability of resources, the status of the performances of
analyses that are already underway, and/or still other status
information from the node device(s) 1330 1n response to
polling, at a recurring interval of time, and/or 1n response to
the occurrence of various preselected events. More specifi-
cally, the control device(s) 1350 may receive indications of
status for each container 1336, each VM 1331 and/or each
node device 1330. At least one control routine 1354 may
implement logic that may use such information to select
container(s) 1336, VM(s) 1331 and/or node device(s) 1330
that are to be used i the execution of the executable
routine(s) 1334 associated with each requested analysis.

As further depicted, in some embodiments, the one or
more control routines 1354 may be executed within one or
more containers 1356 and/or within one or more VMs 1351
that may be instantiated within the one or more control
devices 1350. It may be that multiple instances of one or
more varieties of control routine 1354 may be executed
within separate containers 1356, within separate VMs 1351
and/or within separate control devices 1350 to better enable
parallelized control over parallel performances of requested
analyses, to provide improved redundancy against failures
for such control functions, and/or to separate diflering ones
ol the control routines 1354 that perform different functions.
By way of example, it may be that multiple instances of a
first variety of control routine 1354 that commumnicate with
the requesting device(s) 1370 are executed 1n a first set of
containers 1356 instantiated within a first VM 1351, while
multiple 1nstances of a second variety of control routine
1354 that control the allocation of resources of the node
device(s) 1330 are executed 1n a second set of containers
1356 instantiated within a second VM 1351. It may be that
the control of the allocation of resources for performing
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requested analyses may include deriving an order of perior-
mance ol portions of each requested analysis based on such
factors as data dependencies thereamong, as well as allo-
cating the use of containers 1336 1n a manner that effectuates
such a dertved order of performance.

Where multiple instances of control routine 1354 are used
to control the allocation of resources for performing
requested analyses, such as the assignment of individual
ones of the containers 1336 to be used 1n executing execut-
able routines 1334 of each of multiple requested analyses, 1t
may be that each requested analysis 1s assigned to be
controlled by just one of the instances of control routine
1354. This may be done as part of treating each requested
analysis as one or more “ACID transactions” that each have
the four properties of atomicity, consistency, 1solation and
durability such that a single instance of control routine 1354
1s given full control over the entirety of each such transac-
tion to better ensure that either all of each such transaction
1s either entirely performed or 1s entirely not performed. As
will be familiar to those skilled in the art, allowing partial
performances to occur may cause cache incoherencies and/
or data corruption issues.

As additionally depicted, the control device(s) 1350 may
communicate with the requesting device(s) 1370 and with
the node device(s) 1330 through portions of a network 1399
extending therecamong. Again, such a network as the
depicted network 1399 may be based on any of a variety of
wired and/or wireless technologies, and may employ any of
a variety of protocols by which commands, status, data
and/or still other varieties of information may be exchanged.
It may be that one or more mstances ol a control routine
1354 cause the mstantiation and maintenance of a web portal
or other variety of portal that 1s based on any of a variety of
communication protocols, etc. (e.g., a restiul API). Through
such a portal, requests for the performance of various
analyses may be received from requesting device(s) 1370,
and/or the results of such requested analyses may be pro-
vided thereto. Alternatively or additionally, 1t may be that
one or more instances of a control routine 1354 cause the
instantiation of and maintenance ol a message passing
interface and/or message queues. Through such an interface
and/or queues, individual containers 1336 may ecach be
assigned to execute at least one executable routine 1334
associated with a requested analysis to cause the perfor-
mance ol at least a portion of that analysis.

Although not specifically depicted, it may be that at least
one control routine 1354 may include logic to implement a
form of management of the containers 1336 based on the
Kubernetes container management platform promulgated by
Could Native Computing Foundation of San Francisco, CA,
USA. In such embodiments, containers 1336 in which
executable routines 1334 of requested analyses may be
instantiated within “pods™ (not specifically shown) in which
other containers may also be instantiated for the execution of
other supporting routines. Such supporting routines may
cooperate with control routine(s) 1354 to implement a
communications protocol with the control device(s) 1350
via the network 1399 (e.g., a message passing interface, one
Or more message queues, etc.). Alternatively or additionally,
such supporting routines may serve to provide access to one
or more storage repositories (not specifically shown) in
which at least data objects may be stored for use in per-
forming the requested analyses.

Associated Processes

Referring to FIG. 14, an advanced scientific computing,
method for enhancing preprocessing methodologies applied
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to training datasets 1s illustrated, employing Robust Princi-
pal Component Analysis (RPCA) combined with quantile
threshold preprocessing. F1G. 14 1llustrates one embodiment
of method 1400 for enhancing preprocessing methodologies
in training data sets using RPCA and quantile threshold
preprocessing. It shall be appreciated that other embodi-
ments are possible and configurable according to the needs
presented by different datasets and analytics requirements.

This method 1400, and/or an associated system, capital-
1zes on sequential mathematical and statistical techniques to
refine data quality significantly, thereby optimizing datasets
for more eflicient and accurate predictive modeling, particu-
larly 1n scenarios mvolving vast and historically rich data-
sets.

Method 1400 results in many technical benefits over
conventional data preprocessing techniques. For example,
unlike conventional techmiques that often overlook the
impact of outhiers, method 1400 robustly identifies and
mitigates outlier eflects using quantile-based thresholding,
ensuring the integrity of the dataset 1s maintained throughout
the preprocessing phase. Additionally, outlier filtration pro-
cess 1420 includes functionality for detailed logging and
reporting ol detected outliers, providing valuable insights
into the nature of data anomalies and aiding in further
refinement of data cleansing strategies.

Further, in some embodiments, method 1400 leverages
RPCA to eflectively decompose datasets into meaningiul
components, thereby enhancing the subsequent machine
learning model’s ability to discern patterns and make accu-
rate predictions. It shall be noted that the methods described
herein are not limited to any specific dataset type or industry
application and can be applied to various technological
domains that require robust data preprocessing to enhance
model accuracy and efliciency.

As shown 1n FIG. 14, method 1400 may inmitiate with Data
Acquisition Process 1410. Data Acquisition Process 1410
may mnvolve obtaining a raw dataset comprising a plurality
of data samples that store historical values of a target entity.
This raw dataset may include a multitude of data samples
cach storing historical values of a target enftity, such as
energy usage readings, electricity supply values, energy
demand readings, and/or the like. These data samples may
vary 1n size, type, and complexity, depending on the source
and nature of the data collected. In some embodiments, each
data sample within a raw dataset 1s pre-processed using a
standardized normalization procedure to ensure uniformity
and scale consistency across the dataset, which may be
fundamental for effective subsequent quantile-based outlier
detection.

Additionally, Data Acquisition Process 1410 may be
configured to interface directly with multiple data source
inputs, enabling seamless data aggregation and synchroni-
zation across platforms. This functionality underlies the
system’s capacity to handle real-time data streaming and
batch data processing efliciently. The raw dataset acts as the
foundational 1input required for the subsequent data process-
ing operations, setting the stage for the advanced analytical
techniques that follow.

In some aspects, method 1400 may proceed to include
outlier filtration process 1420. Following the outlier detec-
tion of process 1420 (e.g., subprocesses 1420A-1420D),
outlier filtration process 1420 may extend to automatically
recalibrate the quantile thresholds based on the evolving
nature of the data, employing adaptive algorithms that learn
from previous detection cycles to enhance the accuracy of
outlier 1identification over time.
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Outlier filtration process 1420 may execute an outlier
filtration process based on obtaining the raw dataset,
wherein the outlier filtration process may 1nclude detecting,
by a quantile-based outlier filtration algorithm, outlier data
samples of the plurality of data samples that exceed a lower
quantile threshold or an upper quantile threshold. In some
embodiments, the process may include the application of
advanced statistical metrics to establish the quantile thresh-
olds dynamically based on the distribution characteristics of
the dataset, enhancing the adaptability of the system to
different data anomalies. Central to the system’s preprocess-
ing phase, the execution of outlier filtration process 1420
may entail several meticulously defined steps geared
towards 1dentifying and filtering out statistical outliers.

This may be principally achieved by employing a quan-
tile-based outlier filtration algorithm in Process 1420A,
which meticulously examines the dataset to detect samples
that fall beyond the predefined lower and upper quantile
thresholds. These thresholds may be mathematically deter-
mined based on the distribution characteristics of the data-
set, ensuring that the filtration 1s both precise and adaptable
to different types of data distributions.

Fundamental to refiming the dataset with method 1400,
this quantile-based outlier filtration algorithm in Process
1420A may leverage statistical theories such as the inter-
quartile range method mixed with skewness reduction tech-
niques to precisely identily outher data samples. The
detected outliers are those samples whose values lie outside
the set quantile thresholds, possibly caused by data entry
errors, measurement inaccuracies, or genuine anomalies.

Following outlier detection of process 1420A, the gen-
eration ol an intermediate outlier-reduced dataset in Process
1420B 1nvolves the creation of an intermediate dataset that
has been purged of the identified outliers. This dataset,
therefore, represents a more homogenous and statistically
consistent subset of data samples, which may be critical for
the reliability of the subsequent decomposition and analysis
Processes.

The decomposition by matrix decomposition algorithm
1420C 1s pivotal as it employs a matrix decomposition
algorithm to split the intermediate outlier-reduced dataset
into a transformed features matrix and a sparse matrix. This
decomposition may be executed via an RPCA approach,
which separates principal components (significant informa-
tion or features of a dataset) from the sparse components
(noise, outliers, and/or non-significant features of a dataset).

The transformed features matrix may encapsulate princi-
pal components derived from the dataset, which are essential
for capturing the underlying patterns necessary for etlective
model training. The sparse matrix, on the other hand,
contains elements (e.g., data samples) representing anoma-
lies or noise, further aiding 1n dataset refinement by 1solating
less informative or disruptive data points. In some aspects,
a value of a numerical entry in a feature vector 1n a sparse
matrix 1s anomalous when 1t corresponds to a non-zero
value, and not anomalous when 1t corresponds to a zero
value. In some embodiments, the transformed features may
be obtained using a principal component analysis without

the robust principal component analysis approach indicated
above.

An output of a refined outhier-reduced dataset 1420D may
be generated after undergoing another layer of refinement,
where only those feature vectors from the transformed
features matrix, which are not associated with anomalous
values 1n the sparse matrix, are retamned. This selective
retention ensures that the dataset used for tramning the
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predictive model 1s of optimal quality, devoid of any dis-
tortive elements that could aflect the model’s performance.

In some aspects, each detected outlier may be analyzed to
determine 1ts potential 1mpact on the overall dataset, and
decisions regarding their inclusion or exclusion i1n the
refined outlier-reduced dataset 14200 may be made based
on a combination of automated criteria and optional manual
review, ensuring that each data point contributes positively
to the model’s traiming eflicacy.

A subsequent step i method 1400 1s Model Training
Process 1430 that includes training a model using the refined
outlier-reduced dataset. This model training may involve
advanced and/or statistical algorithms that may include
regression analysis, machine learning techniques, or even
deep learning frameworks depending on the complexity and
requirements of the task at hand. These algorithms adjust
their parameters iteratively to minimize prediction errors,
cllectively learning from the processed dataset to forecast
future values of the target enfity. In some aspects, these
future values may be 24 hours ahead of a current time and/or
one period ahead of the current time.

The next step 1n method 1400 1s predicting, via a trained
model, a value of the target entity at a future time 1440. The
culmination of the preprocessing and training operations 1s
the system’s capability to predict future values of the target
entity. The predictive model applies the learned 1nsights to
new or subsequent data, calculating the probable future
states of the entity based on historical trends and patterns
observed 1n the dataset.

In some aspects, software and algorithmic enhancements
emerge from or present themselves 1n method 1400. Soft-
ware functionalities integral to this system include data
handling routines, outlier detection logistics, and decompo-
sition algorithms. These may be developed using robust
programming languages like Python, R, or another program-
ming language suitable for manipulating data or for scien-
tific computing. The system’s flexibility allows for adjust-
ments 1n algorithm parameters, threshold settings, and
model configurations, making 1t adaptable to various pre-
dictive scenarios.

Building upon the atorementioned process, the method
may further refine the outlier detection by incorporating one
or more other machine learning techniques to predict poten-
tial outlier thresholds across various dataset states, thus
optimizing the filtration process continuously. For example,
an adaptive threshold recalibration (not illustrated 1n FIG.
14) may ensure that the system remains robust against
dynamic changes in the data characteristics, maintaining
high processing integrity and reliability.

The rnigorous approach to data preprocessing depicted 1n
FIG. 14 ensures a high degree of data integrity and robust-
ness, making method 1400 and associated systems, 1impor-
tant tools in the arsenal of data scientists and analytics
prolessionals across various sectors, to significantly advance
predictive analytics and machine learning applications.

This system and method {finds practical applications
across numerous sectors, most notably in energy for demand
forecasting, risk assessment, and for storage and supply
management. By providing a method to prepare highly
reliable datasets, the system ensures that businesses can
make mformed decisions based on accurate predictions, thus
maintaining suilicient risk mitigation preparedness includ-
ing when 1t comes to energy supply and demand forecasting
and storage or grid management. This may have the etlect of
reducing surprise spikes and over-burdened grid utilization
due to partially skewed, noisy, outlier-prone, incomplete, or
incorrect forecasting data. Further industrial use-cases may
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be found across a variety of industry and technological
domains, such as healthcare data management, retail inven-
tory forecasting, energy markets, and energy consumption
analysis.

Overall, FIG. 14 delineates a comprehensive and techni-
cally sophisticated system designed to preprocess training
datasets eflectively using RPCA and quantile threshold
preprocessing to enhance predictive modeling accuracy.
This detailed figure description not only sheds light on the
individual components and their functionalities but also
emphasizes the system’s broad applicability and adaptabil-
ity, as further elucidated by the following figures and
detailed descriptions.

Stated another way, 1n some embodiments, method 1400
may 1nclude processes 1410-1440. Process 1410 may obtain
a raw dataset comprising a plurality of data samples that
store historical values of a target entity. Process 1420 may
execute an outlier filtration process based on obtaining the
raw dataset. Process 1420 may include one or more subpro-
cesses 1420A-1420D. Subprocess 1420A may detect, by a
quantile-based outhier filtration algorithm, outlier data
samples of the plurality of data samples that exceed a lower
quantile threshold or an upper quantile threshold. Subpro-
cess 1420B may generate an intermediate outlier-reduced
dataset that includes a subset of the plurality of data samples,
wherein the intermediate outlier-reduced dataset excludes
the outher data samples that exceed the lower quantile
threshold or the upper quantile threshold. Subprocess 1420C
may decompose, by a matrix decomposition algorithm, the
intermediate outher-reduced dataset into a transformed fea-
tures matrix and a sparse matrix, wherein the transformed
features matrix includes a plurality of feature vectors of a
plurality of principal components of the intermediate outlier-
reduced dataset. Lastly, subprocess 1420D may generate a
refined outlier-reduced dataset that includes a subset of the
plurality of feature vectors, wherein the refined outlier-
reduced dataset excludes feature vectors of the transformed
features matrix that are associated with an anomalous value
in the sparse matrix.

Furthermore, process 1430 may train a model using the
refined outlier-reduced dataset, and process 1440 may pre-
dict, via the trained model, a value of the target entity at a
future time.

Referring to FIGS. 15A and 13B, these figures depict a
comprehensive dataset system designed to enhance the
management and analysis of energy consumption data, spe-
cifically optimized for the scenario of applying robust prin-
cipal component analysis (RPCA) and quantile threshold
preprocessing for training datasets within the energy sector.
This system facilitates accurate predictions and optimiza-
tions 1n energy usage by employing advanced data collection
and statistical analysis techniques, integral to modern energy
management practices.

In FIG. 15A, Raw Dataset 1500 (e.g., an example of a raw
dataset obtained by process 1410) 1s shown to include
Timestamp 1502A. Timestamp 1502A may function as the
primary chronological identifier for each dataset entry,
recording data at precise, pre-defined intervals. The granu-
larity of data collection, typically hourly or minutely, may be
crucial for temporal resolution 1n energy consumption pat-
terns. In some aspects, these time series data samples may be
recorded at pre-defined intervals over a period of time. In
other aspects, this component 1s fundamental for time-series
analysis across multiple energy management scenarios.

Further shown are Energy Demand-related Columns
1502B-1502D. The columns Yesterday Value 1502B, Yes-

terday Load 1502C, and Yesterday Average Load 1502D
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contain historical energy consumption data for the previous
days, allowing comparative analysis over time to detect
patterns or anomalies 1n energy usage. In some cases,
“YDay_Value” may represent yesterday’s price for an hour,
“YDay_lLoad” may represent yesterday’s load/demand for
that hour, and/or “YAve_l.oad” may represent yesterday’s
average load/demand, which 1s a constant value for a
24-hour period (or for the timeframe associated with a
respective row 1504A-15047). These may be utilized in
algorithms that assess daily fluctuations and predict future
demands based on historical data. The interaction between
these columns and the RPCA algorithm helps in identifying
underlying patterns that may not be apparent from raw data
alone.

Calendar Data Columns 1502E-1502H provide additional
temporal dimensions to the data, enriching the analysis by
allowing seasonal and periodic evaluations. The “Month”
column 1502E, “DOW (Day of Week)” column 1502F,
“DOM (Day of Month)” column 1502G, and “DOY (Day of
Year)” column 1502H provide additional temporal markers
that assist 1n seasonal, weekly, and annual energy consump-
tion analysis. These markers are crucial for correlating
energy demands with specific times, enhancing the model’s
predictive accuracy. These columns are used 1n conjunction
with machine learning models to correlate energy usage with
time-based variables, enhancing the accuracy of predictive
models.

The Current Demand column 15021 records the latest
energy demand measurements, critical for real-time moni-
toring and immediate data-driven decision-making. Current
Demand column 15021 captures real-time energy consump-
tion data, essential for immediate decision-making and
system feedback mechamsms. This data aids in real-time
monitoring and adjustments 1n energy distribution systems,
utilizing rapid processing algorithms to adapt to current
demand without delay. In some portions of the disclosure,
column 15021 may be referred to as a “demand value
column” that stores the historical values of a target entity.

In other aspects, FIG. 15B depicts a statistical analysis of
raw dataset 1500 that summarizes the historical data metrics
across diflerent years, providing a macroscopic view of data
trends. Statistical Summary Table 1506 aggregates and
summarizes energy consumption over multiple years, pro-
viding high-level 1nsights through various statistical metrics
established on historical data. Such comprehensive data
analysis supports strategic planning and forecasting 1n
energy management.

Statistical Summary Table 1506 includes various statisti-
cal measures such as “Count,” “Mean,” “Standard Devia-
tion,” “Minimum,” “25%.,” (e.g., first quartile (Q1)) “50%,”
(e.g., median quartile (Q2)) “753%.” (e.g., upper quartile
(QQ3)), and “Maximum.” In some aspects, these metrics may
be essential for understanding the distribution, variability,
and extremities of energy consumption over the years listed.
The table employs statistical measures like mean, standard
deviation, and quartiles, which are calculated using
advanced statistical functions that analyze trends and vari-
ability 1n energy usage. It shall be noted that, in some
embodiments, the statistical measures illustrated in FIG.
15B may be distinctly computed for one or more respective
columns of raw dataset 1500 (e.g., a first set of statistical
measures for column 1502B, a second set of statistical
measures for column 1502C, a third set of statistical mea-
sures for column 1502D, a fourth set of statistical measures
for column 15021 (e.g., a demand value column), etc.)

In other aspects, the method-supporting system’s software
components may be engineered using sophisticated pro-
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gramming languages known for statistical and data analysis
such as Python or R. This supports algorithms for RPCA,
which decomposes an energy dataset (e.g., a dataset derived
from dataset 1500 1n FIG. 15A) into matrices that succinctly
represent normal consumption patterns and anomalies.
These matrices may critically enable the isolation of sig-
nificant features from the noise, a key step in data prepro-
cessing for predictive modeling.

An example of an underlying data collection operation
may begin with data acquisition of dataset 1500 1n FIG. 15A,
where sensors, API connections, and data loggers may first
be used to collect and transmit energy usage data to the
system. This data may be first processed for quality and
integrity before being stored in the structured format shown.
Subsequent statistical analysis associated with FIG. 15B
may evaluate long-term trends and anomalies on a per-
column or multi-column basis. The processed data may then
undergo RPCA, enhancing the dataset by reducing dimen-
sionality and highlighting significant features used 1n
machine learning models for prediction. The system 1s
designed to be capable of handling large datasets with
high-speed processing requirements.

Lower quantile and upper quantile thresholds may be
calculated based on the first and third quartiles of a demand
value dataset (e.g., 25% and 75%), respectively. The calcu-
lation for the lower quantile threshold may be the first
quartile minus a product between a pre-defined scaling
factor (e.g., avalue of 1, 1.5, 2, 3, 4, etc.) and an interquartile
range of the demand value data (e.g., a difference between
the third quartile of the (e.g., demand value) column and the
first quartile of the (e.g., demand value) column). Similarly,
the calculation for the upper quantile threshold may be
calculated as a third quartile of the demand value column
plus the product between the pre-defined scaling factor and
the interquartile range of the demand value data. Parameters
such as data collection frequency, threshold wvalues for
outlier detection, and quantile specifications for data seg-
mentation may be meticulously redesigned to ensure optimal
performance.

The described method and system can be adapted to
various data types and scales, from small facilities to large
metropolitan energy grids and geographies. Alternative
embodiments may include variations 1n the statistical meth-
ods used, the integration of additional data sources like
weather-related, regulatory, or economic indicators, and the
application of different machine learning algorithms for final
model training. While the system 1s demonstrated in the
context of energy data management, the methodologies and
technologies applied can be adapted for other types of
time-series data analytics, such as financial markets or
meteorological data. Modifications can include adjustments
in data granularity, incorporation of additional predictive
variables, or application of alternative machine learning
algorithms for data analysis.

The system 1s designed to seamlessly integrate with
existing energy management infrastructures, including smart
orid technologies and IoT devices. Interfaces and APIs are
structured to facilitate easy data ingestion from diverse
sources and to ensure compatibility with industry-standard
software and hardware. This system and method support
communicating via standardized APIs that facilitate data
exchange between different utilities, marketplaces, and
energy management systems. This imteroperability 1s crucial
for adapting to various technological environments and
enhancing system functionality through external data
sources.
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In practical scenarios, such as 1n smart grid management,
the system can predict peak demand periods and inform
management of a need to adapt energy supply accordingly.
For instance, by analyzing historical and real-time data,
utility companies can implement improved dynamic pricing
models to encourage energy usage during ofl-peak hours,
thus balancing the load on the grid and preventing outages.

Referring now to FIG. 16 A, the figure 1llustrates a multi-
stage outlier filtration process (e.g., an example of process
1420 1n FI1G. 14) integrated within systems and methods for
combining Robust Principal Component Analysis (RPCA)
and quantile threshold preprocessing for training datasets.
This method assimilates robust data handling methodolo-
gies, including RPCA (Robust Principal Component Analy-
s1s) and quantile threshold preprocessing, to optimize the
data quality and robustness of the models trained on such
datasets.

This figure articulates a systematic approach to enhancing
the data quality by progressively filtering and refining data
samples through a series of technologically advanced steps
aimed at improving the reliability of subsequent data analy-
ses and model training.

In certain aspects, the foundation of the depicted method
begins with the collection of raw data, illustrated here as
Raw Dataset 1500. This dataset comprises multiple data
samples, ncluding Data Sample 1504A, Data Sample
15048, and continuing on without limit, showing another
Data Sample 15047. Each data sample stores historical
values that are essential for the subsequent predictive mod-
cling. Raw Dataset 1500 provides the 1nitial set of data from
which outliers will be identified and removed in the later
stages of the process.

In various aspects, Multi-Stage Outlier Filtration Process
1600 1mitiates with Quantile-based Outlier Filtration Algo-
rithm 1602. This algorithm 1s designed to siit through the
Raw Dataset 1500 to detect and exclude data points (e.g.,
data samples) that do not conform to specified quantile
thresholds. This step serves as the first layer of data cleans-
ing, ensuring that the data proceeding to the next stages 1s
devoid of extreme values that could skew the overall analy-
s1s. The algonthm efhiciently i1dentifies outliers exceeding
either the lower or upper quantile thresholds, which are
predetermined based on the data’s distribution characteris-
tics.

In several aspects, following the mnitial outhier detection
and removal, the data that meets the designated criteria
moves forward to Intermediate Outlier-Reduced Dataset
1604. This dataset represents a refined collection of data
samples, where only those samples that fall within the
acceptable quantile range are included. This intermediate
dataset balances the retention of valuable data while exclud-
ing potential outliers, thereby maintaiming the integrity of
the dataset for more accurate and reliable processing in
subsequent steps.

In other aspects, Matrix Decomposition Algorithm 1606
plays a pivotal role in further refining the data by decom-
posing the Intermediate Outlier-Reduced Dataset 1604. The
decomposition mvolves separating the dataset into principal
components that highlight the most significant features (or
combination of features) for analysis while simultaneously
identifying and isolating less relevant or noisy data. This
subset of the raw dataset (e.g., the principal components of
such dataset) may use a smaller number of dimensions than
the raw dataset. For example, the raw dataset may include a
first number of dimensions (e.g., 7 columns (also referred to
as feature columns or features)) and the principal compo-
nents may equivalently or approximately represent those
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columns using a small number of dimensions (e.g., 2, 3, 4,
etc. feature columns). It shall be noted that the values of one
or more principal component for a respective data sample
may be stored i or using a vector (“feature vector” or
“feature array™).

In many aspects, the culmination of this multi-stage
process 1s represented by the Refined Outlier-Reduced Data-
set 1608. This dataset 1s the product of the meticulous
filtration and decomposition processes described previously.
It includes only those data points and feature vectors from
the decomposed dataset that are free from anomalies asso-
ciated with extreme outlier values. This refinement process
ensures that the dataset 1s not only clean but also optimized
for traiming robust predictive models. This final data set 1s
characterized by 1ts enhanced quality and reliability, making
it an 1deal candidate for training models that require high
accuracy and reliability.

The described multi-stage outlier filtration process, as
illustrated 1n FIG. 16A, encompasses a comprehensive and
detailed approach to preparing datasets for predictive mod-
cling 1n various applications. Each component of the process
1s 1nterconnected, with each stage building upon the previ-
ous to enhance the dataset’s quality progressively. A com-
puter hardware implementation supporting Multi-Stage Out-
lier Filtration Process FIG. 16 A will have the computing
power to elliciently filter, decompose, and refine data, har-
nessing these substantial improvements over conventional
methods.

FIGS. 16B1-16B2 provide a visual elaboration on the
process of identitying and handling data samples across
various time periods with specific quantile thresholds 1ncor-
porated. This process 1s intricately related to the founda-
tional concepts depicted and discussed i FIG. 14 (e.g.,
subprocesses 1420A and 1420B), specifically concerning the
process ol outlier filtration and intermediate dataset creation.
FIGS. 16B1-B2 illustrate one embodiment of the method for
quantile threshold preprocessing and outlier detection for
training datasets. It shall be appreciated that other embodi-
ments are possible, highlighting the flexibility and adapt-
ability of the mnvention across varying data contexts.

In FIG. 16B-1 and FIG. 16B-2, a sequential worktlow 1s
illustrated where data samples from consecutive years, spe-
cifically from 2016 to 2021 1n this instance, undergo quantile
threshold analysis for their respective time periods. In data-
driven decision-making systems, method 1400 may be used
to ensure the integrity and accuracy of the datasets used,
which enables reliable model training and subsequent pre-
dictive analytics. This process begins with the mitial data

samples, labeled as Data Samples 1504 A-1504D for the year
2016, Data Samples 1504E-1504H for the year 2017, Data
Samples 15041-1504L for the year 2018, Data Samples
1504M-1504P for the year 2019, Data Samples 13504Q)-
1504T for the year 2020, and Data Samples 1504U-1504X
for the year 2021. Each set of data samples corresponds to
a specific time period, thus allowing for temporal-specific
analysis and comparison.

Calculate QQuantile Thresholds for Specific Time Periods
1602A 1s a process that imnvolves calculating the quantile
thresholds, specifically the upper and lower quantile thresh-
olds for each year. Process Calculate Quantile Thresholds
for Specific Time Periods 1602A may calculate specific
quantile thresholds for various time periods, ensuring that
cach dataset 1s evaluated under criteria tailored to 1ts unique
or corresponding temporal context. The term “quantile
thresholds™ refers to statistical values that segment data 1nto
intervals based on their distribution, allowing for etlective
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outlier i1dentification. Following the setup/computation of
thresholds, the data samples are then processed to identify
outliers.

Referring to FIGS. 16B-1 and 16B-2, 1n some embodi-
ments, Quantile-based Outlier Filtration Algorithm 1602B
may include Identity Outliers 1602B. Process Identity Out-

liers 1602B may identily outliers by comparing each data
sample against the calculated quantile thresholds. This pro-
cess helps 1 distinguishing the data points that deviate

significantly from the typical range, tagged as outliers,
which are then excluded from the intermediate dataset to
enhance the quality of data used for further analysis and
model training.

In some aspects, these thresholds are fundamental 1n
defining the boundaries for outhier identification in the
subsequent step Identity Outliers 1602B. The calculated
thresholds for each year may be crucial as they adapt the
outlier detection mechanism to the peculiarity of each year’s
data distribution, accounting for possible shifts in trends or
anomalies specific to each temporal segment. In some
aspects, method 1400 dynamically adjusts quantile thresh-
olds based on temporal data characteristics, enhancing the
robustness of outlier detection.

Following the setup of thresholds, the data samples are
then processed to i1dentify outliers. In step Identity Outliers
16028, cach data sample 1s examined against the predeter-
mined thresholds. Samples that do not conform to the
established range (within the quantile thresholds) are
marked with an “X”, indicating their status as outliers.
Conversely, samples that fall within the acceptable range are
marked with a “V” checkmark, denoting them as valid
samples for further processing.

The culmination of this rigorous filtration process results
in the formation of an Intermediate Outlier-Reduced Dataset
1604, which includes only the validated data samples from
cach year (e.g., the data samples marked with “V™). In some
aspects, this dataset i1s crucial as 1t represents a refined
selection of data, free from 1dentified outliers, thus enhanc-
ing the integrity and reliability of any subsequent analysis or
model training.

Each vearly data segment demonstrates a clear progres-
sion from raw, unfiltered data samples through a defined
threshold calculation step to meticulous outlier 1dentification
and selection, leading to the consolidation of an outlier-
reduced dataset. This systematic approach ensures that data
handling 1s both consistent and adaptable to specific time-
related variations, providing a robust framework for han-
dling datasets with temporal diversity.

The relationships and connections between the compo-
nents 1n FIGS. 16B-1 and 16B-2 are essential 1n 1llustrating
a comprehensive system that integrates time-sensitive data
handling with precise outlier management to create a
dependable dataset for advanced analytical processes. Each
step, from the 1mitial data acquisition through to the creation
of an outhier-reduced dataset, 1s interconnected, showcasing
a secamless flow that leverages quantile-based assessment for
enhancing data quality and relevance.

In conclusion, FIGS. 16B-1 and 16B-2 not only support
but also extend the methodologies introduced 1n FI1G. 14 by
incorporating a detailed, year-specific analysis framework
that enhances the system’s ability to manage and utilize
large datasets eflectively across diflerent temporal contexts.
This detailed portrayal ensures that the system remains
adaptable and eflicient 1n handling varying data character-
istics over time, pivotal for applications requiring high
precision and reliability 1n predictive modeling and analysis.




US 12,190,219 B1

47

Referring to FIG. 16C, the diagram 1llustrates a compre-
hensive system for processing and refining training datasets
utilizing robust principal component analysis (RPCA) com-
bined with quantile threshold preprocessing for enhancing
machine learning model accuracy. The process 1s delineated

through interconnected steps, each contributing uniquely to
the refinement of the dataset.

Initially, the Intermediate Outhier-Reduced Dataset 1604
1s obtained, comprising various data samples 1nitially from
Raw Dataset 1500. Each data sample represents individual
entries that store historical values of a target entity (e.g.,
energy commodity), which are crucial for the prediction
tasks 1n machine learning models. These samples have
undergone 1nifial preprocessing to exclude any data points
that significantly deviate from the defined quantile thresh-
olds, thus termed ‘“‘outlier-reduced” as described in FIGS.
16A and 16B.

Subsequently, the data samples 1504B-1504X 1n Inter-
mediate Outlier-Reduced Dataset 1604 are fed (e.g., input-
ted) into Matrix Decomposition Algorithm 1606. Matrix
Decomposition Algorithm 1606 divides Intermediate Out-
lier-Reduced Dataset 1604 1nto two key components: the
Transformed Features Matrix 1608A and the Sparse Matrix
1608B. The Transformed Features Matrix 1608 A consists of
a set of principal components, such as Principal Components
1610A-1610J of Data Samples 1504B-1504X, which encap-
sulate the most significant informational aspects of the
original data samples (e.g., the values associated with fea-
tures or columns of the data samples) while reducing the
overall dimensionality. This matrix decomposition focuses
on retaining the variance critical to the underlying patterns
in the dataset, utilizing robust statistical techniques inherent
to Principal Component Analysis (PCA). It shall be noted
that, 1n some portions of the disclosure, Principal Compo-
nents 1610A-1610J] may be referred to as including a
plurality of feature vectors, wherein each feature vector
represents a distinct principal component from a plurality of
principal components. The plurality of feature vectors cap-
tures the underlying dimensions or characteristics of the
dataset, with each feature vector corresponding to one of the
principal components 1610A-1610].

Concurrently, the Sparse Matrix 1608B records the spar-

sity values, such as Sparsity Values 1612A-1612] (e.g.,
numerical entries) of Data Samples 1504B-1504X, which
represent deviations or anomalies from the principal com-
ponents 1dentified. These sparsity values are fundamental 1n
identifying data points that significantly differ from the
established norms, which could represent errors, outliers, or
novel 1nsights separate from the main data trends.

A critical operation following the decomposition i1s the
identification of outliers in process Identify Outliers 1607,
where sparsity values are scrutinized to determine if they
exceed predetermined thresholds indicative of anomalous
data points or samples. This step ensures that the refined
dataset does not include misleading or erroneous informa-
tion that could adversely affect the subsequent data process-
ing or analytical outcomes.

This methodology effectively leverages the capabilities of
Robust Principal Component Analysis (RPCA) by separat-
ing the main structure of the data (low-rank approximation)
and the anomalies (sparse errors), which 1s essenfial for
handling real-world datasets often contaminated with noise
and outliers. In some aspects, RPCA 1s particularly adept at
handling these complexities due to i1ts optimization
approach, which balances the minimization of the nuclear
norm (promoting low rank) and the L1 norm (promoting
sparsity), thus allowing for a robust decomposition under
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various data conditions. In some aspects, the objective of
this optimization i1s achieved by solving a formula designed
to minimize a nuclear norm ||L||* of the transformed features
matrix L. and an 11 norm [|S|/1 of the sparse matrix SS,
formulated as minimize ILIF+AISI1. In this formula, A is a
regularization parameter that 1s computed as

1

N

and n 1s a number of observations 1n the intermediate
outlier-reduced dataset

In practice, this matrix decomposition provides a system-
atic way to enhance data integrity, simplify complex data
structures, and uncover hidden patterns within large data-
sets, thereby supporting more accurate and reliable decision-
making and predictive maintenance processes for energy
utilities.

In a non-limiting example, the RPCA algorithm may be
configured to detect unusual observations (e.g., anomalies)
in the daily prices (e.g., demand) feature, represented by the
day-of-year (DOY) column. In such embodiments, the DOY
feature may be selected as the x-variable, while electricity
prices (e.g., electricity demand) 1s selected as the y-variable.

The process then advances to step Identify Outliers 1607,
where outliers are 1dentified based on the Sparsity Values 1n
Sparse Matrix 1608B. This step ensures that any residual
anomalies, not filtered out in the initial preprocessing, are
recognized and managed accordingly, enhancing the data-
set’s quality. Further values from the Sparse Matrix 1608B
which are deemed outliers 1n this step are shown marked
with an “X”.

Following the identification and management of outliers,
the Refined Outlier-Reduced Dataset 1608 1s generated. This
dataset 1s a purified form of Intermediate Outhier-Reduced
Dataset 1604, where only the data devoid of significant
anomalies (as indicated in the Identify QOutliers 1607 are
retained). In other words, the refined outlier reduce dataset
1608 includes the principal components of data samples that
were not found to be anomalous (e.g., the sparsity value of
the corresponding data sample 1s not anomalous).

Each step 1n FIG. 16C 1s intricately sequenced to create a
robust methodology for preparing a dataset that 1s not only
free from significant outhiers but also refined to include only
the most pertinent features through advanced mathematical
techniques. This detailed preparatory work 1s foundational
in training highly accurate and reliable predictive models,
particularly useful 1n fields requiring precision such as the
energy Sector.

The depicted system and method provide clear, technical
embodiments of processing training datasets through a com-
bination of outlier management and feature refinement tech-
niques. FIG. 16C provides important insights into handling
large datasets, ensuring quality and reliability 1n predictive
modeling tasks for diverse applications.

Referring next to FIG. 17A and FIG. 17B, these figures
1llustrate comparative visual analyses of the skewness levels
in raw data and data post-outhier removal using various
methodologies over the years 2016 to 2021. In a detailed
exploration, these figures support the systems and methods
for combining Robust Principal Component Analysis
(RPCA) and quantile threshold preprocessing for improving
the reliability of training datasets.

FIG. 17 A displays the skewness of raw data annually from
2016 through 2021 along the y-axis, with skewness values
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ranging from O to 18 (e.g., the skewness present 1in data
samples of raw dataset 1500). Each year’s bar graph repre-
sents the asymmetry in the distribution of data samples and
the extent to which these samples deviate from a normal
distribution-a crucial factor aflecting data analysis and sub-
sequent model training. For instance, in 2020, a skewness
value near 16 highlights significant deviation, indicating the
presence ol outliers that could potentially skew predictive
modeling processes.

Transitioning to FIG. 17B, this figure delineates the
cllectiveness of different outlier removal methods, repre-
sented by varied bar patterns for each methodology: tradi-
tional data (“TRAD DATA” (e.g., raw data)), SAS Outlier-
Removed Data, and SAS Enhanced Trad Data. Each
method’s 1mpact on reducing data skewness 1s mapped
across the same timeirame, with skewness values notably
lower than those 1n FIG. 17A, showing improvements from
nearly zero up to a maximum of 1. This stark reduction
evidences the eflectiveness of the preprocessing techniques
in normalizing data distributions. Further, the SAS
Enhanced Trad Data shows that applying the processing
described 1 FIGS. 14 and FIGS. 16A-C have reduced
skewness considerably 1n comparison to “TRAD Data™ and
“SAS Outlier-Removed Data” methods.

In some aspects, the implementation of these outlier
removal processes 1s aligned with the detailed operational
steps described elsewhere, including in FIGS. 14 and FIGS.
16 A-C. The mitial raw dataset, as depicted by the skewness
in FIG. 17A, may undergo a quantile-based outlier filtration
algorithm as described with respect to method 1400. This
algorithm 1s 1nstrumental in detecting and separating outlier
data samples that exceed predetermined lower and upper
quantile thresholds. The algorithm’s eflectiveness is visually
corroborated in FIG. 17B where the reduction in skewness
signifies the successiul removal of outliers and a normal-
ization of the dataset (e.g., SAS Outlier-Remoted DATA)

In other aspects, once outliers are filtered out as with the
SAS Outlier-Removed Data, the dataset undergoes a decom-
position process using an RPCA. This process, as outlined in
FIGS. 16A-C, involves transforming the intermediate data-
set 1nto two matrices-a transformed features matrix and a
sparse matrix. The former contains feature vectors of prin-
cipal components, and the latter helps 1n 1dentifying and
excluding principal components of data samples related to
anomalous values. FIG. 17B, by showcasing reduced skew-
ness post-method application, indirectly wvalidates the
improvement in dataset quality, which can be pivotal for
cllective model training as shown in upcoming FIGS.
18A-D (e.g., SAS Enhanced Trad Data shows a greater
reduction in skewness and heteroskedasticity 1n all calendars
years than the other methods, especially calendar year 2021
in this non-limiting example).

In several aspects, the refined outlier-reduced dataset,
now devoid of extreme skewness and heteroskedasticity,
offers a more robust foundation for training predictive
models. Mitigation of the impacts of heteroskedasticity and
skewness, including their impacts on weights and biases of
the models, 1s practically demonstrated as the adjusted
datasets contribute to a balanced model that 1s less biased
and more accurate in forecasting. In many aspects, the
practical application of this innovation extends to various
sectors where precise data modeling 1s crucial. For instance,
in energy commodity predictions, where time series data of
demand values are critical, the enhanced prediction accuracy
resulting from refined datasets can significantly 1mpact
decision-making processes. The processes of data collection,
outlier detection and removal, dataset decomposition, and
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final utilization 1n predictive modeling are all corroborated
by the graphical reductions 1in skewness from FIG. 17A to
FIG. 17B.

In conclusion, FIGS. 17A and 17B not only wvisually
represent the data skewness for various years but also
underscore the eflicacy of the described outlier filtration and
data processing methods. These figures provide a clear,
quantifiable testament to the technological advancements
claimed, showcasing the transition from raw, skewed data to
refined, model-ready datasets. This transformation 1s pivotal
for enhancing the accuracy and reliability of predictive
models, thereby supporting the overarching claims of the
patent application concerning systems and methods for data
preprocessing in training datasets.

Retferring to FIG. 18A, which illustrates a process for
training a model using a Refined Outlier-Reduced Dataset
1608, the figure exemplifies a method for improving the
predictive performance of machine learning models by
utilizing preprocessed datasets that have undergone outlier
filtering and matrix decomposition. The innovation pre-
sented by the system 1s designed to ensure that models are
trained on high-quality data, which is crucial for accurate
predictions 1n various applications, including energy
demand forecasting.

In some aspects, the Refined Outhier-Reduced Dataset
1608 serves as the mput for the model training process. This
dataset, which excludes anomalies and outhiers from the
original raw dataset, may critically enhance the robustness
and accuracy of the trained model. In other aspects, the
Refined Outlier-Reduced Dataset 1608 may be derived
through a sequence of preprocessing steps. Initially, a raw
dataset 1s obtaimned, and an outhier filtration process 1is
executed using a quantile-based outlier filtration algorithm.
This algorithm detects outliers that exceed a lower quantile
threshold or an upper quantile threshold. The resulting
intermediate outlier-reduced dataset excludes these outliers
and 1s further processed using a matrix decomposition
algorithm like robust principal component analysis (RPCA).

The RPCA algorithm decomposes the intermediate data-
set 1nto a transformed features matrix and a sparse matrix.
The transformed features matrix includes feature vectors of
principal components, while the sparse matrix 1dentifies
anomalous values. The refined outhier-reduced dataset 1s
then generated by excluding feature vectors (e.g., principal
components) associated with anomalies 1n the sparse matrix.
This refined dataset serves as a high-quality mput for
training the machine learning model. The Refined Outlier-
Reduced Dataset 1608 1s transferred to the Model Training
Module 1430, an essential component responsible for devel-
oping the predictive model.

In various aspects, the Model Training Module 1430 may
utilize a range of machine learning algorithms to train the
model, including linear regression, decision trees, support
vector machines, and neural networks. The choice of algo-
rithm may depend on the nature of the data and the specific
requirements of the prediction task. This module incorpo-
rates various methodologies, including supervised learning
techniques, to optimize the model’s parameters based on the
refined dataset. The output of this training process 1s a
Trained Model 1802, which 1s capable of making accurate
predictions based on historical data. Trained Model 1802,
once developed, can be deployed 1n various applications to
provide real-time predictions and support decision-making
Processes.

Referring to FIG. 18B, the process focuses on the use of
the trained model for predicting future values. The Trained

Model 1802 receives Model Input 1804, which consists of
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teatures derived from the refined outlier-reduced dataset.
This mput serves as the basis for the model to generate a
Future Value Prediction 1806 of the target enftity (e.g., a
demand of a (e.g., energy) commodity at the future time).
The Trained Model 1802, leveraging 1ts training on high-
integrity data, ensures that the predictions are both accurate
and reliable.

In certain aspects, the Trained Model 1802 may be used
to predict the value of various target entities at future times,
such as energy demand, stock prices, or sales forecasts. The
Model Input 1804 may include features such as historical
demand, temperature, day of the week, and other relevant
factors. By incorporating both historical and temporal fea-
tures, the model can generate highly accurate predictions for
the specified future timeframe.

Referring to FIG. 18C, 1n some embodiments, Method
1808 may include process 1810. Process 1810 may mnvolve
selecting a future timeframe for demand prediction of an
energy commodity. This may include steps involved in
generating the model mput and using 1t to predict future
demand for an energy commodity. The process begins with
selecting a future timeframe for the prediction (e.g., 1, 6, 12,
24, 48, etc. hours ahead of a current timeirame). This step
involves determining the specific period for which the
energy demand forecast 1s required.

In certain aspects, the next step 1s process 1820, obtaining,
features of the energy commodity from a period preceding
the future timeframe (e.g., the current time or any other time
preceding or occurring before the future time). Process 1820
involves gathering relevant historical data that will inform
the prediction. These features may include various metrics
such as past energy consumption, temperature records, mar-
ket dynamics data, yesterday’s price per hour, load demand
per hour, yesterday’s average hourly load demand, numeric
month of year, numeric day of year, the year, electricity
supply availability data, and other relevant indicators (e.g.,
analogous features to raw dataset 1500, but for the future
time period of interest). This historical data provides the
context needed for accurate forecasting.

In various aspects, Method 1808 continues to Process
1830 with extracting temporal features (e.g., features
described with respect to raw dataset 1500) from the future
timeframe. Process 1830 ensures that the model input
includes not only historical features but also temporal char-
acteristics such as seasonal patterns, holidays, and other
time-related factors that may influence energy demand.

In several aspects, the final Method 1808 subprocess 1s
Process 1840 that includes generating model mput that
includes the obtained features and the extracted temporal
teatures. Process 1840 combines all the relevant data into a
cohesive mput for the trained model. This comprehensive
input enables the model to make informed predictions about
future energy demand.

The system described in these figures operates by first
refining the dataset to remove outliers and anomalies,
thereby enhancing the quality of the data used for training
the model. The model training module then develops a
predictive model based on this refined dataset. Finally, the
trained model utilizes historical and temporal features to
generate accurate predictions for future demand.

In addition to energy demand forecasting, the system
described 1n FIGS. 18A-C can be applied to other domains
such as finance, healthcare, and supply chain management.
For example, in finance, the system could be used to predict
prices or market trends. In healthcare, it could be used to
forecast patient admission rates or disease outbreaks. In
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supply chain management, 1t could be used to predict
inventory needs or delivery times.

Overall, the system provides a robust and accurate
method for preprocessing data, training predictive models,
and generating future predictions. By combining RPCA and
quantile threshold preprocessing, the system ensures that
models are trained on high-quality data, leading to more
reliable and accurate predictions. The components and pro-
cesses 1nvolved i FIGS. 18A, 18B, and 18C provide a
comprehensive understanding of how the system operates
and can be utilized in various applications.

Referring to FIG. 18D-1 and FIG. 18D-2, a table 1llus-
trates the final model validation and performance metrics for
an energy price lorecasting system employing combined
RPCA and quantile threshold preprocessing methods. The
figure exemplifies significant 1mprovements 1n forecast
accuracy resulting from the disclosed preprocessing tech-
niques. This system 1s designed to enhance the reliability of
energy price predictions by mitigating the eflects of outliers
and heteroskedastic noise.

In some aspects, the FIGS. 18D-1 and 18D-2 highlight the
performance metrics across different models and prepro-
cessing strategies. An analysis in Results Table 18350 1is
divided 1nto several rows across FIGS. 18D-1-2, each rep-
resenting a distinct combination of preprocessing methods
and their impact on forecast accuracy. Process 1852 and
Process 1854 are of particular importance due to their
demonstrated improvements.

Referring to Process 1852 as described in row 10 of
Results Table 1850, 1n various aspects, Process 1852 1llus-
trates the results of using a sparse matrix strategy within the
robust principal component analysis (RPCA) framework to
remove outliers. In Process 1852, sparse matrix strategy for
outlier removal, shows how the combination of an advanced
sparse matrix strategy within the RPCA action set and
traditional methods for outlier removal signmificantly reduces
forecast error. The results indicate that this combination
cllectively addresses heteroskedastic noise and improves
overall forecasting accuracy.

Specifically, Row 10 contains Process 1852, in which a
Linear Regression (LR) model i1s used for inference using 7
raw features, after outlier removal by traditional then SAS
Sparse Matrix methods, as detailed elsewhere herein. After
this outlier removal, Process 1852 demonstrates a lower
variance 1n prediction errors when compared to other meth-
ods 1 Results Table 18350, highlighting the efficacy of the
combined preprocessing approach. This reduction 1 vari-
ance 1s a critical factor in enhancing the model’s robustness
and reliability. By iteratively applying both RPCA and
quantile threshold methods, the system achieves a refined
dataset that leads to more accurate forecasts.

In certain aspects, the advanced sparse matrix strategy 1s
implemented by first obtaining a raw dataset and then
executing an outlier filtration process. This process includes
detecting outlier data samples using a quantile-based outlier
filtration algorithm and generating an intermediate outlier-
reduced dataset. The intermediate dataset 1s then decom-
posed by an RPCA algorithm into a transformed features
matrix and a sparse matrix. The final refined dataset
excludes feature vectors associated with anomalous values
in the sparse matrix, ensuring high-quality data for model
training.

Referring to Process 1854 as described in row 12 of
Results Table 1850, a method may leverage the successiul
inference of a trained Linear Regression model using SAS
principal component analysis (PCA) transformed features
after outlier removal by traditional then SAS Sparse Matrix




US 12,190,219 Bl

53

methods to improve electricity price forecasting accuracy.
Process 1854 showcases an advanced analytics method for
clectricity price forecasting demonstrates how PCA, when
used 1n the presence of heteroskedastic noise, significantly
enhances the model’s predictive performance.

In several aspects, the use of PCA involves transiforming,
the original features into principal components that capture
the most significant variations 1n the dataset. This transior-
mation reduces the dimensionality of the data, making it
casier to detect and mitigate the effects of heteroskedastic
noise. By focusing on the key features that drive price
variations, the PCA approach improves the model’s ability
to forecast future prices accurately.

Process also highlights the successiul development of
multiple linear regression models for energy price forecast-
ing using the transformed features obtained through PCA.
The transformed features provide a more robust represen-
tation of the underlying data, leading to improved forecast-
ing accuracy compared to models using raw features alone
or with standard PCA techniques such as Python PCA.

In other aspects, the system depicted 1mn FIG. 18D show-
cases the importance of selecting the appropriate prepro-
cessing sequence to achieve optimal forecasting pertor-
mance. The iterative application of both RPCA and quantile
threshold methods, as shown 1n Process 1852, demonstrates
the novelty and eflectiveness of this combined approach.
Additionally, the successtul implementation of PCA tech-
niques 1n Process 1854 highlights the potential for further
improvements through dimensionality reduction and feature
transformation.

The figure also emphasizes how overprocessing or under-
processing the data can lead to suboptimal results, as
depicted 1n other rows. By 1identifying and applying the 1deal
sequence of preprocessing steps, the system ensures that the
refined dataset 1s of the highest quality, leading to more
accurate and reliable forecasts.

The combination of RPCA and quantile threshold prepro-
cessing, along with the application of PCA techniques,
represents a significant advancement 1n the field of predic-
tive modeling. These methods collectively enhance the
model’s robustness, reduce forecast errors, and improve the

overall accuracy of energy demand predictions.

In conclusion, the methods described in Results Table
1850 demonstrates the substantial benefits of combining
advanced preprocessing techniques for outlier removal and
feature transformation. By leveraging these techmiques, the
system provides a robust and accurate method for predic-
tion, with potential applications in electricity grid manage-
ment, energy demand, and various other domains requiring,
reliable forecasting models.

It shall be noted that the system and methods described
herein can be embodied and/or implemented at least 1n part
as a machine configured to receive a computer-readable
medium storing computer-readable instructions. The
instructions are preferably executed by computer-executable
components preferably integrated with the system and one
or more portions of the processors and/or the controllers.

The computer-readable medium can be stored on any suit-
able computer-readable media such as RAMs, ROMSs, flash

memory, EEPROMSs, optical devices (CD or DVD), hard
drives, tfloppy drnives, memory sticks (e.g., SD cards, USB
flash drives), cloud-based services (e.g., cloud storage),
magnetic storage devices, Solid-State Drives (SSDs), or any
suitable device. The computer-executable component 1s
preferably a general or application-specific processor, but
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any suitable dedicated hardware or hardware/firmware com-
bination device can alternatively or additionally execute the
instructions.

The systems and methods of the preferred embodiments
may additionally, or alternatively, be implemented on an
integrated data analytics soltware application and/or sofit-
ware architecture such as those offered by SAS Institute Inc.
of Cary, N.C., USA. Merely for 1llustration, the systems and
methods of the preferred embodiments may be implemented
using or integrated with one or more SAS software tools
such as SAS® Viya™ which 1s developed and provided by
SAS Institute Inc. of Cary, N.C., USA.

Although omitted for conciseness, the preferred embodi-
ments include every combination and permutation of the
implementations of the systems and methods described
herein.

As a person skilled 1n the art will recognize from the
previous detailed description and from the figures and
claims, modifications and changes can be made to the
embodiments of the disclosure without departing from the
scope of the various described embodiments.

What 1s claimed 1s:

1. A computer-program product comprising a non-transi-
tory machine-readable storage medium storing computer
instructions that, when executed by one or more processors,
perform operations comprising:

obtaining a raw dataset comprising a plurality of data

samples that store historical values of a target entity
that includes an energy commodity, healthcare data
management, retail imventory, an energy market, an
energy consumption, energy utilities, electricity gnd
management, or energy;

executing an outlier filtration process based on obtaining

the raw dataset, wherein the outlier filtration process

includes:

detecting, by a quantile-based outlier filtration algo-
rithm, outlier data samples of the plurality of data
samples that exceed a lower quantile threshold or an
upper quantile threshold,

generating an intermediate outlier-reduced dataset that
includes a subset of the plurality of data samples,
wherein the intermediate outher-reduced dataset
excludes the outlier data samples that exceed the
lower quantile threshold or the upper quantile thresh-
old,

decomposing, by a matrix decomposition algorithm,
the intermediate outlier-reduced dataset into a trans-
formed features matrix and a sparse matrix, wherein
the transformed features matrix includes a plurality
of feature vectors of a plurality of principal compo-
nents of the intermediate outlier-reduced dataset; and

generating a refined outlier-reduced dataset that
includes a subset of the plurality of feature vectors,
wherein the refined outlier-reduced dataset excludes
feature vectors of the transformed features matrix
that are associated with an anomalous value 1n the
sparse matrix;

training a model using the refined outlier-reduced dataset;

maintaining risk mitigation preparedness by predicting

via the trained model a value of the target entity that
includes predicting for a future time a demand of the
energy commodity, the healthcare data management,
the retail inventory, the energy market, the energy
consumption, the energy utilities, the electricity gnid
management, or the energy; and

predicting, via the trained model, the value of the target

entity at the future time.
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2. The computer-program product according to claim 1,

wherein:

the sparse matrix includes a plurality of numerical entries,

a respective feature vector of the transformed features
matrix 1s associated with a respective numerical entry
in the sparse matrix,

a value of the respective numerical entry 1s anomalous
when the value of the respective numerical entry cor-
responds to a non-zero value, and

the value of the respective numerical entry 1s not anoma-
lous when the value of the respective numerical entry
corresponds to a zero value.

3. The computer-program product according to claim 1,

wherein:

a subset of the plurality of data samples 1n the raw dataset
cause heteroskedasticity and skewness,

the refined outlier-reduced dataset excludes the subset of
the plurality of data samples that cause the heteroske-
dasticity and the skewness, and

using the refined outher-reduced dataset to train the model
mitigates an impact that the heteroskedasticity and the
skewness have on a weight and a bias of the model.

4. The computer-program product according to claim 1,

wherein:

the quantile-based outlier filtration algorithm detects that
a first subset of the plurality of data samples exceed the
lower quantile threshold and that a second subset of the
plurality of data samples exceed the upper quantile

threshold, and

the intermediate outhier-reduced data set:
excludes the outlier data samples that exceed the lower
quantile threshold and the upper quantile threshold,
including the first subset and the second subset of the
plurality of data samples, and
includes data samples of the plurality of data samples
that are within the lower quantile threshold and the
upper quantile threshold.
5. The computer-program product according to claim 1,
wherein:
the lower quantile threshold and the upper quantile thresh-

old are computed for a first period of time within the
raw dataset,
the quantile-based outlier filtration algorithm further com-
putes a lower quantile threshold and an upper quantile
threshold for at least a second period of time within the
raw dataset, and
detecting, by the quantile-based outlier filtration algo-
rithm, includes:
detecting the outlier data samples of the plurality of
data samples that exceed the lower quantile threshold
and the upper quantile threshold of the first period of
time, and
detecting outlier data samples of the plurality of data
samples that exceed the lower quantile threshold and
the upper quantile threshold of the second period of
time.
6. The computer-program product according to claim 1,
wherein:
the raw dataset includes a first number of dimensions, and
the transformed features matrix represents features of the
intermediate outlier-reduced dataset, a subset of the
raw dataset, using a smaller number of dimensions than
the first number of dimensions.
7. The computer-program product according to claim 1,
wherein:
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the outlier filtration process includes a plurality of outlier
filtration stages, including a first outlier filtration stage
and a second outlier filtration stage,

the first outher filtration stage 1s executed before the
second outlier filtration stage and includes:
the detecting of the outlier data samples that exceed the

lower quantile threshold or the upper quantile thresh-
old, and
the generating of the intermediate outlier-reduced data-

set, and
the second outlier filtration stage 1s executed after the first
outlier filtration stage and includes:
the decomposing of the intermediate outlier-reduced
dataset, and
the generating of the refined outlier-reduced dataset.

8. The computer-program product according to claim 1,
wherein:

the plurality of data samples stores the historical values of

the target entity via a demand value column,

the lower quantile threshold 1s calculated as a first quartile

of the demand value column minus a product between
a pre-defined scaling factor and an interquartile range
of the demand value column, and

the upper quantile threshold i1s calculated as a third

quartile of the demand value column plus the product
between the pre-defined scaling factor and the inter-
quartile range of the demand value column.

9. The computer-program product according to claim 8,
wherein the mterquartile range of the demand value column
1s defined as a difference between the third quartile of the
demand value column and the first quartile of the demand
value column.

10. The computer-program product according to claim 1,
wherein:

the plurality of data samples are time series data samples

recorded at pre-defined intervals over a period of time,
and

a historical value stored within a respective data sample of

the plurality of data samples specifies a historical
demand of the energy commodity at a respective inter-
val over the period of time.

11. The computer-program product according to claim 1,
wherein a respective data sample of the plurality of data
samples includes:

a respective historical value of the target entity, and

a plurality of features for predicting the respective his-

torical value.

12. The computer-program product according to claim 1,
wherein predicting the value of the target entity at the future
time 1ncludes:

recerving, via the trained model, a model input that at least

specifies features of the target entity during a period
preceding the future time; and

predicting, via the trained model, the value of the target

entity at the future time based at least on the features of
the target entity during the period preceding the future
time.

13. The computer-program product according to claim 12,
wherein:

the future time 1s 24 hours ahead of a current time, and

the period preceding the future time 1s the current time.

14. The computer-program product according to claim 12,
wherein the features of the target entity during the period
preceding the future time at least include:

the demand of the target entity during the period preced-

ing the future time, and
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a load of the target entity during the period preceding the
future time.
15. The computer-program product according to claim 14,
wherein:
the features of the target entity during the period preced-
ing the future time further include:
an average load of the target enftity during a day
associated with the period preceding the future time,
and
the model input further specifies temporal features asso-
ciated with the future time, including:
a numerical representation of a month associated with
the future time,
a numerical representation of a day of week associated
with the future time,
a numerical representation of a day of month associated
with the future time, and
a numerical representation of a day of year associated
with the future time.
16. The computer-program product according to claim 1,
wherein:
the matrix decomposition algorithm 1s a robust principal
component analysis algorithm (RPCA),
the robust principal component analysis algorithm
(RPCA) solves an optimization formula to decompose
the intermediate outhier-reduced dataset into the trans-
formed features matrix and the sparse matrix, and
an objective of the optimization formula 1s to minimize a
nuclear norm |[L||* of the transformed features matrix
LL and an 11 norm |[S||1 of the sparse matrix SS,
formulated as minimize ILI*+AISI1, wherein: A is a
regularization parameter that 1s computed as

1

Nk

and n 1s a number or observations in the intermediate
outhier-reduced dataset.
17. A computer-implemented method comprising:
obtaining a raw dataset comprising a plurality of data
samples that store historical values of a target entity
that includes an energy commodity, healthcare data
management, retaill inventory, an energy market, an
energy consumption, energy ufilities, electricity grid
management, Or energy;
executing an outlier filtration process based on obtaining
the raw dataset, wherein the outhier filtration process
includes:
detecting, by a quantile-based outlier filtration algo-
rithm, outlier data samples of the plurality of data
samples that exceed a lower quantile threshold or an
upper quantile threshold,
generating an intermediate outher-reduced dataset that
includes a subset of the plurality of data samples,
wherein the intermediate outlier-reduced dataset
excludes the outhier data samples that exceed the
lower quantile threshold or the upper quantile thresh-
old,

decomposing, by a matrix decomposition algorithm,
the intermediate outlier-reduced dataset into a trans-
formed features matrix and a sparse matrix, wherein
the transformed features matrix includes a plurality
of feature vectors of a plurality of principal compo-
nents of the intermediate outlier-reduced dataset; and
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generating a refined outlier-reduced dataset that
includes a subset of the plurality of feature vectors,
wherein the refined outher-reduced dataset excludes
feature vectors of the transformed features matrix
that are associated with an anomalous value 1n the
sparse matrix;

training a model using the refined outlier-reduced dataset;

maintaining risk mitigation preparedness by predicting
via the trained model a value of the target entity that
includes predicting for a future time a demand of the
energy commodity, the healthcare data management,
the retail inventory, the energy market, the energy
consumption, the energy utilities, the electricity grid
management, or the energy; and

predicting, via the trained model, the value of the target
enfity at the future time.

18. The computer-implemented method according to

claim 17, wherein:

the sparse matrix includes a plurality of numerical entries,

a respective feature vector of the transformed features
matrix 1s associated with a respective numerical entry
1n the sparse matrix,

a value of the respective numerical entry 1s anomalous
when the value of the respective numerical entry cor-
responds to a non-zero value, and

the value of the respective numerical entry 1s not anoma-
lous when the value of the respective numerical entry
corresponds to a zero value.

19. The computer-implemented method according to

claim 17, wherein:

a subset of the plurality of data samples in the raw dataset
cause heteroskedasticity and skewness,

the refined outher-reduced dataset excludes the subset of
the plurality of data samples that cause the heteroske-
dasticity and the skewness, and

using the refined outlier-reduced dataset to train the model
mitigates an 1mpact that the heteroskedasticity and the
skewness have on a weight and a bias of the model.

20. The computer-implemented method according to

claim 17, wherein:

the quantile-based outlier filtration algorithm detects that
a first subset of the plurality of data samples exceed the

lower quantile threshold and that a second subset of the
plurality of data samples exceed the upper quantile
threshold, and
the intermediate outlier-reduced data set:
excludes the outlier data samples that exceed the lower
quantile threshold and the upper quantile threshold,
including the first subset and the second subset of the
plurality of data samples, and

includes data samples of the plurality of data samples
that are within the lower quantile threshold and the
upper quantile threshold.

21. The computer-implemented method according to

claim 17, wherein:

the lower quantile threshold and the upper quantile thresh-
old are computed for a first period of time within the
raw dataset,

the quantile-based outlier filtration algorithm further com-
putes a lower quantile threshold and an upper quantile

threshold for at least a second period of time within the
raw dataset, and

detecting, by the quantile-based outhier filtration algo-
rithm, includes:
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detecting the outlier data samples of the plurality of
data samples that exceed the lower quantile threshold
and the upper quantile threshold of the first period of
time, and

detecting outlier data samples of the plurality of data
samples that exceed the lower quantile threshold and

the upper quantile threshold of the second period of
time.

22. The computer-implemented method according to

claim 17, wherein:

the raw dataset includes a first number of dimensions, and

the transformed features matrix represents features of the
intermediate outlier-reduced dataset, a subset of the
raw dataset, using a smaller number of dimensions than
the first number of dimensions.

23. The computer-implemented method according to

claim 17, wherein:
the outlier filtration process includes a plurality of outlier
filtration stages, including a first outlier filtration stage
and a second outlier filtration stage,
the first outhier filtration stage i1s executed before the
second outlier filtration stage and includes:
the detecting of the outlier data samples that exceed the
lower quantile threshold or the upper quantile thresh-
old, and

the generating of the intermediate outlier-reduced data-
set, and

the second outlier filtration stage 1s executed after the first
outlier filtration stage and includes:
the decomposing of the intermediate outlier-reduced

dataset, and
the generating of the refined outlier-reduced dataset.
24. A computer-implemented system comprising:
ONne Or mMore processors;
a memory;
a non-transitory computer-readable medium operably
coupled to the one or more processors, the non-transi-
tory computer-readable medium having computer-
readable 1nstructions stored thereon that, when
executed by the one or more processors, cause a
computing device to perform operations comprising;:
obtaining a raw dataset comprising a plurality of data
samples that store historical values of a target entity
that mncludes an energy commodity, healthcare data
management, retail inventory, an energy market, an
energy consumption, energy utilities, electricity gnd
management, or energy;
executing an outlier filtration process based on obtaining
the raw dataset, wherein the outlier filtration process
includes:
detecting, by a quantile-based outlier filtration algo-
rithm, outlier data samples of the plurality of data
samples that exceed a lower quantile threshold or an
upper quantile threshold,

generating an intermediate outlier-reduced dataset that
includes a subset of the plurality of data samples,
wherein the intermediate outlier-reduced dataset
excludes the outlier data samples that exceed the
lower quantile threshold or the upper quantile thresh-
old,

decomposing, by a matrix decomposition algorithm,
the intermediate outlier-reduced dataset 1nto a trans-
formed features matrix and a sparse matrix, wherein
the transformed features matrix includes a plurality
of feature vectors of a plurality of principal compo-
nents of the intermediate outlier-reduced dataset; and
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generating a refined outlier-reduced dataset that
includes a subset of the plurality of feature vectors,
wherein the refined outlier-reduced dataset excludes
feature vectors of the transformed features matrix
that are associated with an anomalous value 1n the
sparse matrix;

training a model using the refined outlier-reduced dataset;

maintaining risk mitigation preparedness by predicting
via the trained model a value of the target entity that
includes predicting for a future time a demand of the
energy commodity, the healthcare data management,
the retail inventory, the energy market, the energy
consumption, the energy utilities, the electricity grid
management, or the energy; and

predicting, via the trained model, the value of the target
entity at the future time.

25. The computer-implemented system according to

claim 24, wherein:

the sparse matrix includes a plurality of numerical entries,

a respective feature vector of the transformed features
matrix 1s associated with a respective numerical entry
in the sparse matrix,

a value of the respective numerical entry 1s anomalous
when the value of the respective numerical entry cor-
responds to a non-zero value, and

the value of the respective numerical entry 1s not anoma-
lous when the value of the respective numerical entry
corresponds to a zero value.

26. The computer-implemented system according to

claim 24, wherein:

a subset of the plurality of data samples 1n the raw dataset
cause heteroskedasticity and skewness,

the refined outlier-reduced dataset excludes the subset of
the plurality of data samples that cause the heteroske-
dasticity and the skewness, and

using the refined outlier-reduced dataset to train the model
mitigates an 1impact that the heteroskedasticity and the
skewness have on a weight and a bias of the model.

27. The computer-implemented system according to

claim 24, wherein:
the quantile-based outhier filtration algorithm detects that
a first subset of the plurality of data samples exceed the
lower quantile threshold and that a second subset of the
plurality of data samples exceed the upper quantile
threshold, and
the itermediate outhier-reduced data set:
excludes the outlier data samples that exceed the lower
quantile threshold and the upper quantile threshold,
including the first subset and the second subset of the
plurality of data samples, and

includes data samples of the plurality of data samples
that are within the lower quantile threshold and the
upper quantile threshold.

28. The computer-implemented system according to

claim 24, wherein:

the lower quantile threshold and the upper quantile thresh-
old are computed for a first period of time within the
raw dataset,

the quantile-based outhier filtration algorithm further com-
putes a lower quantile threshold and an upper quantile

threshold for at least a second period of time within the
raw dataset, and

detecting, by the quantile-based outlier filtration algo-
rithm, includes:
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detecting the outlier data samples of the plurality of
data samples that exceed the lower quantile threshold
and the upper quantile threshold of the first period of
time, and

detecting outlier data samples of the plurality of data 5
samples that exceed the lower quantile threshold and
the upper quantile threshold of the second period of

time.
29. The computer-implemented system according to
claim 24, wherein: 10

the raw dataset includes a first number of dimensions, and
the transformed features matrix represents features of the
intermediate outlier-reduced dataset, a subset of the
raw dataset, using a smaller number of dimensions than

the first number of dimensions. 15
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